322 research outputs found
Steroid Concentrations in Plasma, Whole Blood and Brain: Effects of Saline Perfusion to Remove Blood Contamination from Brain
The brain and other organs locally synthesize steroids. Local synthesis is suggested when steroid levels are higher in tissue than in the circulation. However, measurement of both circulating and tissue steroid levels are subject to methodological considerations. For example, plasma samples are commonly used to estimate circulating steroid levels in whole blood, but steroid levels in plasma and whole blood could differ. In addition, tissue steroid measurements might be affected by blood contamination, which can be addressed experimentally by using saline perfusion to remove blood. In Study 1, we measured corticosterone and testosterone (T) levels in zebra finch (Taeniopygia guttata) plasma, whole blood, and red blood cells (RBC). We also compared corticosterone in plasma, whole blood, and RBC at baseline and after 60 min restraint stress. In Study 2, we quantified corticosterone, dehydroepiandrosterone (DHEA), T, and 17β-estradiol (E2) levels in the brains of sham-perfused or saline-perfused subjects. In Study 1, corticosterone and T concentrations were highest in plasma, significantly lower in whole blood, and lowest in RBC. In Study 2, saline perfusion unexpectedly increased corticosterone levels in the rostral telencephalon but not other regions. In contrast, saline perfusion decreased DHEA levels in caudal telencephalon and diencephalon. Saline perfusion also increased E2 levels in caudal telencephalon. In summary, when comparing local and systemic steroid levels, the inclusion of whole blood samples should prove useful. Moreover, blood contamination has little or no effect on measurement of brain steroid levels, suggesting that saline perfusion is not necessary prior to brain collection. Indeed, saline perfusion itself may elevate and lower steroid concentrations in a rapid, region-specific manner
1ES 1927+654: An AGN Caught Changing Look on a Timescale of Months
We study the sudden optical and ultraviolet (UV) brightening of 1ES 1927+654, which until now was known as a narrow-line active galactic nucleus (AGN). 1ES 1927+654 was part of the small and peculiar class of "true Type-2" AGNs that lack broad emission lines and line-of-sight obscuration. Our high-cadence spectroscopic monitoring captures the appearance of a blue, featureless continuum, followed several weeks later by the appearance of broad Balmer emission lines. This timescale is generally consistent with the expected light travel time between the central engine and the broadline emission region in (persistent) broadline AGN. Hubble Space Telescope spectroscopy reveals no evidence for broad UV emission lines (e.g., C iv λ1549, C iii] λ1909, Mg ii λ2798), probably owing to dust in the broadline emission region. To the best of our knowledge, this is the first case where the lag between the change in continuum and in broadline emission of a "changing look" AGN has been temporally resolved. The nature and timescales of the photometric and spectral evolution disfavor both a change in line-of-sight obscuration and a change of the overall rate of gas inflow as driving the drastic spectral transformations seen in this AGN. Although the peak luminosity and timescales are consistent with those of tidal disruption events seen in inactive galaxies, the spectral properties are not. The X-ray emission displays a markedly different behavior, with frequent flares on timescales of hours to days, and will be presented in a companion publication
High-dose daptomycin and fosfomycin treatment of a patient with endocarditis caused by daptomycin-nonsusceptible Staphylococcus aureus: Case report
<p>Abstract</p> <p>Background</p> <p>Emergence of daptomycin-nonsusceptible (DNS) <it>Staphylococcus aureus </it>is a dreadful problem in the treatment of endocarditis. Few current therapeutic agents are effective for treating infections caused by DNS <it>S. aureus</it>.</p> <p>Case presentation</p> <p>We describe the emergence of DNS <it>S. aureus</it>. in a patient with implantable cardioverter-defibrillator (ICD) device -related endocarditis who was priorily treated with daptomycin. Metastatic dissemination as osteomyelitis further complicated the management of endocarditis. The dilemma was successfully managed by surgical removal of the ICD device and combination antimicrobial therapy with high-dose daptomycin and fosfomycin.</p> <p>Conclusions</p> <p>Surgical removal of intracardiac devices remains an important adjunctive measure in the treatment of endocarditis. Our case suggests that combination therapy is more favorable than single-agent therapy for infections caused by DNS <it>S. aureus</it>.</p
Characterization of coagulase-negative staphylococcal isolates from blood with reduced susceptibility to glycopeptides and therapeutic options
<p>Abstract</p> <p>Background</p> <p>Coagulase-negative staphylococci (CoNS) are a major cause of nosocomial blood stream infection, especially in critically ill and haematology patients. CoNS are usually multidrug-resistant and glycopeptide antibiotics have been to date considered the drugs of choice for treatment. The aim of this study was to characterize CoNS with reduced susceptibility to glycopeptides causing blood stream infection (BSI) in critically ill and haematology patients at the University Hospital Tor Vergata, Rome, Italy, in 2007.</p> <p>Methods</p> <p>Hospital microbiology records for transplant haematology and ICU were reviewed to identify CoNS with elevated MICs for glycopeptides, and isolates were matched to clinical records to determine whether the isolates caused a BSI. The isolates were tested for susceptibility to new drugs daptomicin and tigecycline and the genetic relationship was assessed using f-AFLP.</p> <p>Results</p> <p>Of a total of 17,418 blood cultures, 1,609 were positive for CoNS and of these, 87 (5.4%) displayed reduced susceptibility to glycopeptides. Clinical review revealed that in 13 cases (7 in haematology and 6 in ICU), CoNS with reduced susceptibility to glycopeptides were responsible for a BSI. <it>Staphylococcus epidermidis </it>was the causative organism in 11 instances and <it>Staphylococcus haemolyticus </it>in 2. The incidence of oxacillin resistance was high (77%), although all isolates remained susceptible to linezolid, daptomycin and tigecycline. Fingerprinting of CoNS identified one clonal relationship between two isolates.</p> <p>Conclusion</p> <p>Multi-resistant CoNS with reduced susceptibility to glycopeptides, although still relatively infrequent in our hospital, are emerging pathogens of clinical concern. Surveillance by antibiotyping with attention to multi-resistant profile, and warning to clinicians, is necessary.</p
Sequential formation and resolution of multiple rosettes drive embryo remodelling after implantation
The morphogenetic remodelling of embryo architecture after implantation culminates in pro-amniotic cavity formation. Despite its key importance, how this transformation occurs remains unknown. Here, we apply high-resolution imaging of embryos developing in vivo and in vitro, spatial RNA sequencing and 3D trophoblast stem cell models to determine the sequence and mechanisms of these remodelling events. We show that cavitation of the embryonic tissue is followed by folding of extra-embryonic tissue to mediate the formation of a second extra-embryonic cavity. Concomitantly, at the boundary between embryonic and extra-embryonic tissues, a hybrid 3D rosette forms. Resolution of this rosette enables the embryonic cavity to invade the extra-embryonic tissue. Subsequently, β1-integrin signalling mediates the formation of multiple extra-embryonic 3D rosettes. Podocalyxin exocytosis leads to their polarized resolution, permitting the extension of embryonic and extra-embryonic cavities and their fusion into a unified pro-amniotic cavity. These morphogenetic transformations of embryogenesis reveal a previously unappreciated mechanism for lumen expansion and fusionThe M.Z.G lab is supported by grants from the European Research Council (669198) and the Welcome Trust (098287/Z/12/Z) and the EU Horizon 2020 Marie Sklodowska-Curie actions (ImageInLife,721537). C.K is supported by BBSRC Doctoral training studentship
An outflow powers the optical rise of the nearby, fast-evolving tidal disruption event AT2019qiz
At 66 Mpc, AT2019qiz is the closest optical tidal disruption event (TDE) to date, with a luminosity intermediate between the
bulk of the population and the faint-and-fast event iPTF16fnl. Its proximity allowed a very early detection and triggering of
multiwavelength and spectroscopic follow-up well before maximum light. The velocity dispersion of the host galaxy and fits
to the TDE light curve indicate a black hole mass ≈106 M, disrupting a star of ≈1 M. By analysing our comprehensive UV,
optical, and X-ray data, we show that the early optical emission is dominated by an outflow, with a luminosity evolution L ∝ t
2,
consistent with a photosphere expanding at constant velocity (2000 km s−1), and a line-forming region producing initially
blueshifted H and He II profiles with v = 3000–10 000 km s−1. The fastest optical ejecta approach the velocity inferred from
radio detections (modelled in a forthcoming companion paper from K. D. Alexander et al.), thus the same outflow may be
responsible for both the fast optical rise and the radio emission – the first time this connection has been observed in a TDE.
The light-curve rise begins 29 ± 2 d before maximum light, peaking when the photosphere reaches the radius where optical
photons can escape. The photosphere then undergoes a sudden transition, first cooling at constant radius then contracting at
constant temperature. At the same time, the blueshifts disappear from the spectrum and Bowen fluorescence lines (N III) become
prominent, implying a source of far-UV photons, while the X-ray light curve peaks at ≈1041 erg s−1. Assuming that these X-rays
are from prompt accretion, the size and mass of the outflow are consistent with the reprocessing layer needed to explain the
large optical to X-ray ratio in this and other optical TDEs, possibly favouring accretion-powered over collision-powered outflow
models
Oestrogen blocks the nuclear entry of SOX9 in the developing gonad of a marsupial mammal
<p>Abstract</p> <p>Background</p> <p>Hormones are critical for early gonadal development in nonmammalian vertebrates, and oestrogen is required for normal ovarian development. In contrast, mammals determine sex by the presence or absence of the <it>SRY </it>gene, and hormones are not thought to play a role in early gonadal development. Despite an XY sex-determining system in marsupial mammals, exposure to oestrogen can override <it>SRY </it>and induce ovarian development of XY gonads if administered early enough. Here we assess the effect of exogenous oestrogen on the molecular pathways of mammalian gonadal development.</p> <p>Results</p> <p>We examined the expression of key testicular (<it>SRY</it>, <it>SOX9</it>, <it>AMH </it>and <it>FGF9</it>) and ovarian (<it>WNT4</it>, <it>RSPO1</it>, <it>FOXL2 </it>and <it>FST</it>) markers during gonadal development in the marsupial tammar wallaby (<it>Macropus eugenii</it>) and used these data to determine the effect of oestrogen exposure on gonadal fate. During normal development, we observed male specific upregulation of <it>AMH </it>and <it>SOX9 </it>as in the mouse and human testis, but this upregulation was initiated before the peak in <it>SRY </it>expression and 4 days before testicular cord formation. Similarly, key genes for ovarian development in mouse and human were also upregulated during ovarian differentiation in the tammar. In particular, there was early sexually dimorphic expression of <it>FOXL2 </it>and <it>WNT4</it>, suggesting that these genes are key regulators of ovarian development in all therian mammals. We next examined the effect of exogenous oestrogen on the development of the mammalian XY gonad. Despite the presence of <it>SRY</it>, exogenous oestrogen blocked the key male transcription factor SOX9 from entering the nuclei of male somatic cells, preventing activation of the testicular pathway and permitting upregulation of key female genes, resulting in ovarian development of the XY gonad.</p> <p>Conclusions</p> <p>We have uncovered a mechanism by which oestrogen can regulate gonadal development through the nucleocytoplasmic shuttling of SOX9. This may represent an underlying ancestral mechanism by which oestrogen promotes ovarian development in the gonads of nonmammalian vertebrates. Furthermore, oestrogen may retain this function in adult female mammals to maintain granulosa cell fate in the differentiated ovary by suppressing nuclear translocation of the SOX9 protein.</p> <p>See commentary: http://www.biomedcentral.com/1741-7007/8/110</p
Genetic Diversity of Staphylocoagulase Genes (coa): Insight into the Evolution of Variable Chromosomal Virulence Factors in Staphylococcus aureus
. Although SCs have been classified into 10 serotypes based on the differences in the antigenicity, genetic bases for their diversities and relatedness to chromosome types are poorly understood. type except for the cases of CC1 and CC8, which contained two and three different SC types, respectively. loci, resulting in the carriage of the combinations of allotypically different important virulence determinants in staphylococcal chromosome
- …