1,655 research outputs found

    Scalar perturbations in braneworld cosmology

    Get PDF
    We study the behaviour of scalar perturbations in the radiation-dominated era of Randall-Sundrum braneworld cosmology by numerically solving the coupled bulk and brane master wave equations. We find that density perturbations with wavelengths less than a critical value (set by the bulk curvature length) are amplified during horizon re-entry. This means that the radiation era matter power spectrum will be at least an order of magnitude larger than the predictions of general relativity (GR) on small scales. Conversely, we explicitly confirm from simulations that the spectrum is identical to GR on large scales. Although this magnification is not relevant for the cosmic microwave background or measurements of large scale structure, it will have some bearing on the formation of primordial black holes in Randall-Sundrum models.Comment: 17 pages, 7 figure

    Self-Reduction Rate of a Microtubule

    Full text link
    We formulate and study a quantum field theory of a microtubule, a basic element of living cells. Following the quantum theory of consciousness by Hameroff and Penrose, we let the system to reduce to one of the classical states without measurement if certain conditions are satisfied(self-reductions), and calculate the self-reduction time τN\tau_N (the mean interval between two successive self-reductions) of a cluster consisting of more than NN neighboring tubulins (basic units composing a microtubule). τN\tau_N is interpreted there as an instance of the stream of consciousness. We analyze the dependence of τN\tau_N upon NN and the initial conditions, etc. For relatively large electron hopping amplitude, τN\tau_N obeys a power law τNNb\tau_N \sim N^b, which can be explained by the percolation theory. For sufficiently small values of the electron hopping amplitude, τN\tau_N obeys an exponential law, τNexp(cN)\tau_N \sim \exp(c' N). By using this law, we estimate the condition for τN\tau_N to take realistic values τN\tau_N \raisebox{-0.5ex}{>\stackrel{>}{\sim}} 10110^{-1} sec as NN \raisebox{-0.5ex} {>\stackrel{>}{\sim}} 1000.Comment: 7 pages, 9 figures, Extended versio

    Primordial perturbations from slow-roll inflation on a brane

    Get PDF
    In this paper we quantise scalar perturbations in a Randall-Sundrum-type model of inflation where the inflaton field is confined to a single brane embedded in five-dimensional anti-de Sitter space-time. In the high energy regime, small-scale inflaton fluctuations are strongly coupled to metric perturbations in the bulk and gravitational back-reaction has a dramatic effect on the behaviour of inflaton perturbations on sub-horizon scales. This is in contrast to the standard four-dimensional result where gravitational back-reaction can be neglected on small scales. Nevertheless, this does not give rise to significant particle production, and the correction to the power spectrum of the curvature perturbations on super-horizon scales is shown to be suppressed by a slow-roll parameter. We calculate the complete first order slow-roll corrections to the spectrum of primordial curvature perturbations.Comment: 23 pages, 10 figure

    Correction:Zebra stripes through the eyes of their predators, zebras, and humans

    Get PDF
    The century-old idea that stripes make zebras cryptic to large carnivores has never been examined systematically. We evaluated this hypothesis by passing digital images of zebras through species-specific spatial and colour filters to simulate their appearance for the visual systems of zebras' primary predators and zebras themselves. We also measured stripe widths and luminance contrast to estimate the maximum distances from which lions, spotted hyaenas, and zebras can resolve stripes. We found that beyond ca. 50 m (daylight) and 30 m (twilight) zebra stripes are difficult for the estimated visual systems of large carnivores to resolve, but not humans. On moonless nights, stripes are difficult for all species to resolve beyond ca. 9 m. In open treeless habitats where zebras spend most time, zebras are as clearly identified by the lion visual system as are similar-sized ungulates, suggesting that stripes cannot confer crypsis by disrupting the zebra's outline. Stripes confer a minor advantage over solid pelage in masking body shape in woodlands, but the effect is stronger for humans than for predators. Zebras appear to be less able than humans to resolve stripes although they are better than their chief predators. In conclusion, compared to the uniform pelage of other sympatric herbivores it appears highly unlikely that stripes are a form of anti-predator camouflage

    Primordial perturbations from slow-roll inflation on a brane

    Get PDF
    In this paper we quantise scalar perturbations in a Randall-Sundrum-type model of inflation where the inflaton field is confined to a single brane embedded in five-dimensional anti-de Sitter space-time. In the high energy regime, small-scale inflaton fluctuations are strongly coupled to metric perturbations in the bulk and gravitational back-reaction has a dramatic effect on the behaviour of inflaton perturbations on sub-horizon scales. This is in contrast to the standard four-dimensional result where gravitational back-reaction can be neglected on small scales. Nevertheless, this does not give rise to significant particle production, and the correction to the power spectrum of the curvature perturbations on super-horizon scales is shown to be suppressed by a slow-roll parameter. We calculate the complete first order slow-roll corrections to the spectrum of primordial curvature perturbations

    Advantageous grain boundaries in iron pnictide superconductors

    Get PDF
    High critical temperature superconductors have zero power consumption and could be used to produce ideal electric power lines. The principal obstacle in fabricating superconducting wires and tapes is grain boundaries-the misalignment of crystalline orientations at grain boundaries, which is unavoidable for polycrystals, largely deteriorates critical current density. Here, we report that High critical temperature iron pnictide superconductors have advantages over cuprates with respect to these grain boundary issues. The transport properties through well-defined bicrystal grain boundary junctions with various misorientation angles (thetaGB) were systematically investigated for cobalt-doped BaFe2As2 (BaFe2As2:Co) epitaxial films fabricated on bicrystal substrates. The critical current density through bicrystal grain boundary (JcBGB) remained high (> 1 MA/cm2) and nearly constant up to a critical angle thetac of ~9o, which is substantially larger than the thetac of ~5o for YBCO. Even at thetaGB > thetac, the decay of JcBGB was much smaller than that of YBCO.Comment: to appear in Nature Communication

    Nebular-Phase Spectra of Nearby Type Ia Supernovae

    Full text link
    We present late-time spectra of eight Type Ia supernovae (SNe Ia) obtained at >200>200 days after peak brightness using the Gemini South and Keck telescopes. All of the SNe Ia in our sample were nearby, well separated from their host galaxy's light, and have early-time photometry and spectroscopy from the Las Cumbres Observatory (LCO). Parameters are derived from the light curves and spectra such as peak brightness, decline rate, photospheric velocity, and the widths and velocities of the forbidden nebular emission lines. We discuss the physical interpretations of these parameters for the individual SNe Ia and the sample in general, including comparisons to well-observed SNe Ia from the literature. There are possible correlations between early-time and late-time spectral features that may indicate an asymmetric explosion, so we discuss our sample of SNe within the context of models for an offset ignition and/or white dwarf collisions. A subset of our late-time spectra are uncontaminated by host emission, and we statistically evaluate our nondetections of Hα\alpha emission to limit the amount of hydrogen in these systems. Finally, we consider the late-time evolution of the iron emission lines, finding that not all of our SNe follow the established trend of a redward migration at >200>200 days after maximum brightness.Comment: 20 pages, 8 figures, 9 tables; accepted to MNRA

    Non-linear Evolution of Baryon Acoustic Oscillations from Improved Perturbation Theory in Real and Redshift Spaces

    Get PDF
    We study the non-linear evolution of baryon acoustic oscillations in the matter power spectrum and correlation function from the improved perturbation theory (PT). Based on the framework of renormalized PT, we apply the {\it closure approximation} that truncates the infinite series of loop contributions at one-loop order, and obtain a closed set of integral equations for power spectrum and non-linear propagator. The resultant integral expressions keep important non-perturbative properties which can dramatically improve the prediction of non-linear power spectrum. Employing the Born approximation, we then derive the analytic expressions for non-linear power spectrum and the predictions are made for non-linear evolution of baryon acoustic oscillations in power spectrum and correlation function. A detailed comparison between improved PT results and N-body simulations shows that a percent-level agreement is achieved in a certain range in power spectrum and in a rather wider range in correlation function. Combining a model of non-linear redshift-space distortion, we also evaluate the power spectrum and correlation function in correlation function. In contrast to the results in real space, the agreement between N-body simulations and improved PT predictions tends to be worse, and a more elaborate modeling for redshift-space distortion needs to be developed. Nevertheless, with currently existing model, we find that the prediction of correlation function has a sufficient accuracy compared with the cosmic-variance errors for future galaxy surveys with volume of a few (Gpc/h)^3 at z>=0.5.Comment: 25 pages, 15 figures, accepted for publication in Phys.Rev.
    corecore