We study the non-linear evolution of baryon acoustic oscillations in the
matter power spectrum and correlation function from the improved perturbation
theory (PT). Based on the framework of renormalized PT, we apply the {\it
closure approximation} that truncates the infinite series of loop contributions
at one-loop order, and obtain a closed set of integral equations for power
spectrum and non-linear propagator. The resultant integral expressions keep
important non-perturbative properties which can dramatically improve the
prediction of non-linear power spectrum. Employing the Born approximation, we
then derive the analytic expressions for non-linear power spectrum and the
predictions are made for non-linear evolution of baryon acoustic oscillations
in power spectrum and correlation function. A detailed comparison between
improved PT results and N-body simulations shows that a percent-level agreement
is achieved in a certain range in power spectrum and in a rather wider range in
correlation function. Combining a model of non-linear redshift-space
distortion, we also evaluate the power spectrum and correlation function in
correlation function. In contrast to the results in real space, the agreement
between N-body simulations and improved PT predictions tends to be worse, and a
more elaborate modeling for redshift-space distortion needs to be developed.
Nevertheless, with currently existing model, we find that the prediction of
correlation function has a sufficient accuracy compared with the
cosmic-variance errors for future galaxy surveys with volume of a few (Gpc/h)^3
at z>=0.5.Comment: 25 pages, 15 figures, accepted for publication in Phys.Rev.