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We study the nonlinear evolution of baryon acoustic oscillations in the matter power spectrum and

correlation function from the improved perturbation theory (PT). Based on the framework of renormalized

PT, which provides a nonperturbative way to treat the gravitational clustering of large-scale structure, we

apply the closure approximation that truncates the infinite series of loop contributions at one-loop order,

and obtain a closed set of integral equations for power spectrum and nonlinear propagator. The resultant

integral expressions are basically equivalent to those previously derived in the form of evolution

equations, and they keep important nonperturbative properties which can dramatically improve the

prediction of nonlinear power spectrum. Employing the Born approximation, we then derive the analytic

expressions for nonlinear power spectrum and the predictions are made for nonlinear evolution of baryon

acoustic oscillations in power spectrum and correlation function. We find that the improved PT possesses a

better convergence property compared with standard PT calculation. A detailed comparison between

improved PT results and N-body simulations shows that a percent-level agreement is achieved in a certain

range in power spectrum and in a rather wider range in correlation function. Combining a model of

nonlinear redshift-space distortion, we also evaluate the power spectrum and correlation function in

redshift space. In contrast to the results in real space, the agreement between N-body simulations and

improved PT predictions tends to be worse, and a more elaborate modeling for redshift-space distortion

needs to be developed. Nevertheless, with the currently existing model, we find that the prediction of

correlation function has a sufficient accuracy compared with the cosmic-variance errors for future galaxy

surveys with volume of a few h�3 Gpc3 at z * 0:5.

DOI: 10.1103/PhysRevD.80.123503 PACS numbers: 98.80.�k, 02.30.Mv, 95.36.+x, 98.65.Dx

I. INTRODUCTION

In the last decade, systematic measurements of the
cosmic microwave background anisotropies as well as
large-scale structure of the Universe have led to the estab-
lishment of the ‘‘standard cosmological model’’ (e.g., [1–
5]). The Universe is close to a flat geometry, and is filled
with the hypothetical cold dark matter (CDM) particles,
together with a small fraction of baryons, which serve as
the seeds of structure formation of the Universe. The most
striking feature in the standard cosmological model is that
the energy contents of the Universe is dominated by the
mysterious energy component called dark energy, which is
supposed to drive the late-time cosmic acceleration dis-
covered by the observation of distant supernovae (e.g.,
[6,7]).

Currently, our understanding of the nature of dark en-
ergy is still lacking. Although the observation is roughly
consistent with cosmological constant and with no evi-
dence for time dependence of dark energy, long-distance
modifications of general relativity have been proposed
alternative to the dark energy and these reconcile with
the observation of late-time acceleration (see [8–11] for
reviews). While a fully consistent model of modified grav-

ity has not yet been constructed (see [12–14] for popular
models), a possibility of breakdown of general relativity
still remains and should be tested.
To understand deeply the nature of dark energy or origin

of cosmic acceleration, a further observational study is
definitely important. There are two comprehensive ways
to distinguish between many models of dark energy and
discriminate the dark energy from modified gravity. One is
to precisely measure the expansion history of the Universe,
and the other is to observe the growth of structure.
Among various observational techniques, baryon acous-

tic oscillations (BAOs) imprinted on the matter power
spectrum or two-point correlation function can be used as
a standard ruler to measure the cosmic expansion history
(e.g., [15,16], see also [17–21] for recent BAO measure-
ments). The characteristic scale of BAOs, which is deter-
mined by the sound horizon scale of primeval baryon-
photon fluid at the last scattering surface [22,23], is thought
to be a robust measure, and it lies on the linear to quasi-
linear regimes of the gravitational clustering of large-scale
structure [24,25]. With a percent-level determination of the
characteristic scale of BAOs, the expansion history can be
tightly constrained, and the equation-of-state parameter of
the dark energy, wde, defined by the ratio of pressure to
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energy density of dark energy, would be precisely deter-
mined within the precision of a few percent level [26,27].
This is the basic reason why most of the planned and
ongoing galaxy redshift surveys aim at precisely measur-
ing the BAOs (e.g., [28–31]).

While the robustness of the BAOs as a standard ruler has
been repeatedly stated and emphasized in the literature, in
order to pursue an order-of-magnitude improvement, a
precise theoretical modeling of BAOs definitely plays an
essential role for precision measurement of BAO scale, and
it needs to be investigated taking account of the various
systematic effects. Among these, the nonlinear clustering
and redshift-space distortion effects as well as the galaxy
biasing cannot be neglected, and affect the characteristic
scale, although their effects are basically moderate at the
relevant wave number, k & 0:3h Mpc�1.

Recently, several analytic approaches to deal with the
nonlinear clustering have been developed, complementary
to the N-body simulations [32–42]. In contrast to the
standard analytical calculation with perturbation theory
(PT), these have been formulated in a nonperturbative
way with techniques resumming a class of infinite series
of higher-order corrections in perturbative calculation.
Thanks to its nonperturbative formulation, the applicable
range of the prediction is expected to be greatly improved,
and the nonlinear evolution of baryon acoustic oscillations
would be accurately described with a percent-level
precision.

The purpose of this paper is to investigate the viability of
this analytic approach, focusing on a specific improved
treatment. In the previous paper [43], we have applied a
nonlinear statistical method, which is widely accepted in
the statistical theory of turbulence [44], to the cosmologi-
cal perturbation theory of large-scale structure. We have
derived the nonperturbative expressions for the power
spectrum, coupled with nonlinear propagator, which effec-
tively contain the information on the infinite series of
higher-order corrections in the standard PT expansion.
Based on this formalism, the analytic treatment of the
nonperturbative expression is developed employing the
Born approximation, and the leading-order calculation of
power spectrum is compared with N-body simulations in
real space [45], finding that a percent-level agreement is
achieved in a mildly nonlinear regime (see also [46]). Here,
we extend the analysis to those including the next-to-lead-
ing-order corrections of the Born approximation. In addi-
tion to the power spectrum, we will consider the two-point
correlation function, paying a special attention on the
baryon acoustic peak, i.e., a Fourier counterpart of BAOs
in power spectrum. Further, we also discuss the nonlinear
clustering in redshift space, and the predictions of im-
proved PT are compared with N-body results, combining
a nonlinear model of redshift-space distortion. We examine
how well the present nonlinear model accurately describes
the systematic effects on BAOs and/or baryon acoustic
peak.

This paper is organized as follows: In Sec. II, we briefly
mention the basic equations for cosmological PT as our
fundamental basis to deal with the nonlinear gravitational
clustering. We then discuss in some detail in Sec. III how to
compute the nonlinear power spectrum or two-point corre-
lation functions. Starting from the discussions on standard
treatment of perturbative calculation and its nonperturba-
tive reformulation called renormalized PT, we introduce
the closure approximation, which gives a consistent
nonperturbative scheme to treat the infinite series of re-
normalized PT expansions, and obtain a closed set of non-
perturbative expressions for power spectrum. Based on
this, we present a perturbative treatment of the closed set
of equations while keeping important nonperturbative
properties. Section IV gives the main result of this paper,
in which a detailed comparison between improved PT
calculation and N-body simulation is made, especially
focusing on the nonlinear evolution of BAOs. We compute
the power spectrum and two-point correlation function in
both real and redshift spaces, and investigate the accuracy
of both predictions by comparing improved PT with
N-body results. Finally, Sec. V is devoted to the discussion
and conclusion.

II. PRELIMINARIES

Throughout the paper, we consider the evolution of
CDM plus baryon systems neglecting the tiny fraction of
(massive) neutrinos. Owing to the single-stream approxi-
mation of the collisionless Boltzmann equation, which is
thought to be a quite accurate approximation on large
scales, the evolution of the CDM plus baryon system can
be treated as the irrotational and pressureless fluid system
whose governing equations are continuity and Euler equa-
tions in addition to the Poisson equation (see Ref. [47] for
review). In the Fourier representation, these equations are
further reduced to a more compact form. Let us introduce
the two-component vector (e.g.,[32]):

�aðk; tÞ ¼
�
�ðk; tÞ;��ðk; tÞ

fðtÞ
�
; (2.1)

where the subscript a ¼ 1, 2 selects the density and the
velocity components of CDM plus baryons, with � and
�ðxÞ � r � vðxÞ=ðaHÞ, where a and H are the scale factor
of the Universe and the Hubble parameter, respectively.
The function fðtÞ is given by fðtÞ � d lnDðtÞ=d lna and the
quantityDðtÞ being the linear growth factor. Then, in terms
of the new time variable � � lnDðtÞ, the evolution equa-
tion for the vector quantity �aðk; tÞ becomes�
�ab

@

@�
þ�abð�Þ

�
�bðk;�Þ

¼
Z d3k1d

3k2
ð2�Þ3 �Dðk� k1 � k2Þ�abcðk1; k2Þ�bðk1;�Þ

��cðk2;�Þ; (2.2)
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where �D is the Dirac delta function. Here and in what
follows, we use the summation convention that the repeti-
tion of the same subscripts indicates the sum over the
whole vector components. The time-dependent matrix
�abð�Þ is given by

�abð�Þ ¼
0 �1

� 3
2f2

�mð�Þ 3
2f2

�mð�Þ � 1

 !
: (2.3)

The quantity�mð�Þ is the density parameter of CDM plus
baryons at a given time. Each component of the vertex
function �abc becomes

�abcðk1; k2Þ ¼

8>>>>><>>>>>:

1
2 f1þ k2�k1

jk2j2 g ; ða; b; cÞ ¼ ð1; 1; 2Þ
1
2 f1þ k1�k2

jk1j2 g ; ða; b; cÞ ¼ ð1; 2; 1Þ
ðk1�k2Þjk1þk2j2

2jk1j2jk2j2 ; ða; b; cÞ ¼ ð2; 2; 2Þ
0 ; otherwise

:

(2.4)

Note that the formal solution of�a can be obtained from
Eq. (2.2) and is expressed as (e.g., [32,47])

�aðk;�Þ ¼ gabð�;�0Þub�0ðkÞ þ
Z �

�0

d�0gabð�;�0Þ

�
Z d3k1d

3k2
ð2�Þ3 �Dðk� k1 � k2Þ�bcdðk1; k2Þ

��cðk1;�0Þ�dðk2;�0Þ: (2.5)

Here, the quantity ua is the constant vector which specifies
the initial condition (see next section), and the quantity gab
denotes the linear propagator satisfying the following
equation: �

�ab

@

@�
þ�abð�Þ

�
gbcð�;�0Þ ¼ 0; (2.6)

with the boundary condition gabð�;�Þ ¼ �ab. The quan-
tity �0 is the random density field given at an early time�0,
which is assumed to obey the Gaussian statistic. The power
spectrum of density field is defined as

h�0ðkÞ�0ðk0Þi ¼ ð2�Þ3�Dðkþ k0ÞP0ðkÞ: (2.7)

Equation (2.2) or (2.5) is the fundamental building block
of large-scale structure, and the three quantities �abc, gab
and P0uaub introduced here constitute the basic pieces of
standard PT. The graphical representation of them is shown
in Fig. 1 (see also Ref. [32]).

III. IMPROVED PERTURBATION THEORY

A. Standard PT vs renormalized PT

In this paper, we are especially concerned with the
nonlinear evolution of the two-point statistics, defined as
the ensemble average of �a:

h�aðk;�Þ�bðk0;�0Þi ¼ ð2�Þ3�Dðkþ k0ÞPabðjkj;�;�0Þ;
� � �0: (3.1)

In the above, there are four types of power spectra, P11,
P12, P21, and P22, which, respectively, correspond to the
auto- and cross-power spectra, P��,�P��=f,�P��=f, and
P��=f

2. Note that in general we have P12 � P21 unless
� ¼ �0.
Consider how to compute the power spectrum based on

the analytic treatment. In the standard treatment of the
perturbation theory, we first assume that the field �a is a
small perturbed quantity, and it is expanded as

�aðk;�Þ ¼ �ð1Þ
a ðk;�Þ þ�ð2Þ

a ðk;�Þ þ�ð3Þ
a ðk;�Þ þ � � � :

(3.2)

The explicit functional form of the quantity �ðnÞ
a is sys-

tematically derived through the order-by-order treatment
of Eq. (2.2). Substituting the above expansion into the
definition (3.1) and evaluating it perturbatively, the power
spectrum Pabðk;�;�Þ, shortly abbreviated as Pabðk;�Þ, is
schematically expressed as

Pabðk;�Þ ¼ e2�uaubP0ðkÞ þ P
1-loop
ab ðk;�Þ þ P

2-loop
ab ðk;�Þ

þ � � � ; (3.3)

where we chose ua ¼ ð1; 1Þ, which implies that the
growing-mode solution is imposed at the initial condition.1

The function P0ðkÞ is the linear power spectrum given at an

early time, obtained from the first-order quantity �ð1Þ
a (see

Eq. (2.7) for definition). The subsequent terms P
1-loop
ab and

P
2-loop
ab represent the corrections to the linear-order pertur-

bation, arising from the higher-order quantities,

�ð2Þ
a ;�ð3Þ

a ; � � � . In terms of the basic pieces of the diagrams

shown in Fig. 1, the corrections P
1-loop
ab ðkÞ and P

2-loop
ab ðkÞ

can be diagrammatically written as the one-loop and two-

u au b P 0(k) : a b
k -k

gab(η,η’) :
η η’

a b γabc(k 1,k 2) : a

b

c

k 1

k 2

k 1+k 2

FIG. 1. Diagrammatic notion of the initial power spectrum (left), linear propagator (middle), and tree vertex (right). The linear
propagator satisfies Eq. (2.6) with the boundary condition gabð�;�Þ ¼ �ab. The explicit expression of the vertex function �abc is given
by Eq. (2.4).

1Strictly speaking, this statement is valid only when the
universe at an early time is approximately described by the
Einstein-de Sitter universe.
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loop diagrams, i.e., connected diagrams including one and
two closed loops (e.g., see Fig. 5 in Ref. [32]), and they are
roughly proportional to P0�

2
0 and P0�

4
0, where �2

0 ¼
k3P0ðkÞ=ð2�2Þ. The explicit expressions for the power
spectra together with the solutions of higher-order pertur-
bation are summarized in Appendix A.

It should be noted that in the standard PT expansion, the
positivity of the perturbative corrections is not guaranteed.
As we show later, the one- and two-loop contributions
change sign depending on the scale, and the absolute
values of their amplitudes become comparable at lower
redshift. In this respect, the standard PT has a poor con-
vergence property, and the improvement of PT predictions
may not be always guaranteed even including the higher-
order corrections.

By contrast, renormalized PT2 reorganizes the naive
expansions of the standard PT by introducing the non-
perturbative statistical quantities [32]. In terms of these
quantities, partial resummation of the naive expansion
series is made, and the resultant convergence of the ex-
pansions is dramatically improved. In the renormalized PT,
the power spectrum Pabðk;�Þ is expressed in the form as

Pabðk;�Þ ¼ Gacðkj�;�0ÞGbdðkj�;�0ÞPcdðk;�0Þ
þ PðMCÞ

ab ðk;�;�0Þ (3.4)

with �0 being the time at which initial condition is im-
posed. Here, Pcdðk;�0Þ is the power spectrum given at an
early time �0. The quantity Gab is one of the nonperturba-
tive statistical quantities called nonlinear propagator, to-
gether with the nonlinear power spectrum. It is defined by�
��aðk;�Þ
��bðk0;�0Þ

�
¼ �Dðk� k0ÞGabðjkjj�;�0Þ; � � �0;

(3.5)

where � stands for a functional derivative. The propagator
Gab describes the influence of an infinitesimal disturbance
for �aðk0;�0Þ on�aðk;�Þ, and it coincides with the linear
propagator gab in the limit k ! 0. Note that there is
another nonperturbative statistical quantity called full ver-
tex, which is the nonlinear counterpart of the vertex func-
tion �abc [32].

In the expression (3.4), the term PðMCÞ
ab represents the

corrections coming from the loop diagrams. In contrast to

the standard PT, the loop diagrams in PðMCÞ
ab are whole

irreducible, as the result of renormalization or reorganiza-
tion. Further, each of the irreducible diagrams consists of

the nonperturbative quantities of nonlinear power spec-
trum, nonlinear propagator, and full vertex. In this respect,
renormalized PT is a fully nonperturbative formulation,
and even the expansions truncated at some levels still
contain the higher-order effects of nonlinear gravitational
evolution. This is the basic reason why the convergence
properties in the renormalized PT are expected to be im-
proved. As a trade-off, however, a straightforward appli-
cation of renormalized PT seems difficult because of its
nonperturbative formulation. While the term PMC

ab collects

only the irreducible diagrams, it is expressed as an infinite
sum of the loop diagrams, each of which involve the
nonlinear power spectrum itself. In practice, the approxi-
mation or simplification is needed to evaluate the expres-
sions (3.4), which we will discuss in next subsection.

B. Closure approximation

In this subsection, taking a great advantage of the for-
mulation of renormalized PT, we discuss how to approxi-
mately treat Eq. (3.4) without losing its nonperturbative
aspect as much as possible.
In the framework of renormalized PT, the nonperturba-

tive effects on the power spectrum are largely attributed to
the nonlinear propagator. Thus, it seems essential to give a
framework to treat both the nonlinear propagator and
power spectrum on an equal footing. As it has been pointed
out by Ref. [32], a similar kind of the renormalized expan-
sion to the power spectrum (3.4) can be made for the
nonlinear propagator

Gabðkj�;�0Þ ¼ gabð�;�0Þ þGðMCÞ
ab ðk;�;�0Þ; (3.6)

where the term GðMCÞ
ab represents the mode-coupling cor-

rection, which is also made of the infinite sum of irreduc-
ible loop diagrams.
In order to give a self-consistent treatment for both

Eqs. (3.4) and (3.6), a simple but transparent approach is
to first (i) adopt the tree-level approximation of the full
vertex function, and to (ii) apply the truncation procedure
to the mode-coupling terms. This treatment has been fre-
quently used in the statistical theory of turbulence in order
to deal with the Navier-Stokes equation, and is called
closure approximation [43]. In the first approximation (i),
the full vertex function is simply replaced with the linear-
order one, i.e., �abc defined in Eq. (2.4). As for the trunca-
tion (ii), the simplest choice is to keep the one-loop re-
normalized diagram only, and to discard all other
contributions.
With this approximation, the mode-coupling terms in

Pab and Gab are simply described by PðMCÞ
ab ’ PðMC;1-loopÞ

ab

andGðMCÞ
ab ’ GðMC;1-loopÞ

ab . The analytical expressions for the

one-loop contributions becomes [43]

2In this paper, we intend to make a clear distinction between
the terms ‘‘renormalized PT’’ and ‘‘RPT.’’ While the renormal-
ized PT indicates the general nonperturbative formalism devel-
oped by Ref. [32], the RPT is meant to imply the practical
approximation method for computing the power spectrum based
on the renormalized PT, which has been developed by Ref. [34]
(see Appendix B).
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P
ðMC;1-loopÞ
ab ðk;�;�0Þ ¼

Z �

�0

d�1

Z �0

�0

d�2Gacðkj�;�1ÞGbdðkj�0; �2Þ�cdðk;�2; �1Þ; (3.7)

G
ðMC;1-loopÞ
ab ðk;�;�0Þ ¼

Z �

�1

d�1

Z �1

�0
d�2gacð�;�1ÞGsbðkj�2; �

0Þ

� 4
Z d3q

ð2�Þ3 �cpqðq; k� qÞPprðq;�1; �2ÞGqlðjk� qjj�1; �2Þ�lrsð�q; kÞ: (3.8)

The integrand in PðMC;1-loopÞ
ab contain the function �ðk;�1; �2Þ, which represents the nonlinear mode coupling between

different Fourier modes, given by

�abðk;�1; �2Þ ¼ 2
Z d3q

ð2�Þ3 �arsðq; k� qÞ�bpqðq; k� qÞfPprðq;�1; �2ÞPqsðjk� qj;�1; �2Þ�ð�1 � �2Þ

þ Prpðq;�2; �1ÞPsqðjk� qj;�2; �1Þ�ð�2 � �1Þg: (3.9)

Note that the mode-coupling function � possesses the
following symmetry: �abðk;�1; �2Þ ¼ �baðk;�2; �1Þ.
The corresponding diagrams to the integral expressions
for power spectrum and nonlinear propagator, i.e.,
Eqs. (3.4) and (3.6) with mode-coupling terms (3.7) and
(3.8), are shown in Fig. 2.

It is worth mentioning that the integral Eqs. (3.4) and
(3.6) with truncated mode-coupling terms (3.7) and (3.8)
can be recast in the form of the integro-differential equa-
tions, and both the power spectrum and nonlinear propa-
gator can be computed by solving the evolution equations.
This forward treatment seems especially suited for the
full nonlinear treatment of closure approximation and
would be faster than directly treating the integral equa-
tions. Numerical algorithm to solve evolution equations,
together with preliminary results, is presented in detail in
Ref. [48] (see also [49]).

In the present paper, we are especially concerned with
the evolution of BAOs around k & 0:4h Mpc�1, where the
nonlinearity of gravitational clustering is rather mild, and
the analytical treatment even involving some approxima-
tions is still useful. Here, employing the Born approxima-
tion, we analytically evaluate the integral Eqs. (3.4) and
(3.7) [43]. A fully numerical study on BAOs without Born
approximation will be discussed in a separate paper.
The Born approximation is the iterative approximation

scheme in which the leading-order solutions are first ob-
tained by replacing the quantities in the nonlinear integral
terms with linear-order ones. The solutions can be im-
proved by repeating the iterative substitution of the
leading-order solutions into the nonlinear integral terms.
Consider the time evolution of the power spectrum started
from the time �0. For a sufficiently small value of �0, the
early-time evolution of power spectrum is well approxi-
mated by the linear theory. Assuming the growing-mode
initial condition, we have

Pabðk;�0Þ ¼ e2�0uaubP0ðkÞ (3.10)

with ua ¼ ð1; 1Þ. Then, substituting Eq. (3.10) into (3.4),
the iterative evaluation of the integral Eqs. (3.4) with (3.7)
by the Born approximation leads to [43]

Pabðk;�Þ ¼ ~Gaðkj�;�0Þ ~Gbðkj�;�0Þe2�0P0ðkÞ
þ PðMC1Þ

ab ðk;�Þ þ PðMC2Þ
ab ðk;�Þ þ � � � ;

(3.11)

where we define ~Ga � Ga1 þGa2. The terms PðMC1Þ
ab and

PðMC2Þ
ab , respectively, represent the leading- and next-to-

leading-order results of the Born approximation to the
mode-coupling term (3.7). The explicit expressions be-
come

+
η’ηη η’

=
η η’

P ab(k;η,η’)

2
η1 η2

+
η’ηη η’

=
η η’

Gab(k| η,η’)

4
η1 η2

FIG. 2. Diagrammatic representation of the power spectrum
and nonlinear propagator in the closure approximation. The thick
lines represent the full-order quantities, while the thin line
indicates the linear-order one. The second terms at right-hand
side indicate the irreducible one-loop diagrams of the mode-

coupling terms, PðMC;1-loopÞ
ab and GðMC;1-loopÞ

ab . In the renormalized

PT, the mode-coupling term is expressed as an infinite sum of the
irreducible loop corrections. Truncating the infinite sum at one-
loop order and adopting the tree-level approximation of the full
vertex function, we obtain the closed system of power spectrum
and propagator, as shown in the figure.
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PðMC1Þ
ab ðk;�Þ ¼ 2

Z d3q

ð2�Þ3 Iaðk; q;�;�0ÞIbðk; q;�;�0Þe4�0P0ðqÞP0ðjk� qjÞ; (3.12)

PðMC2Þ
ab ðk;�Þ ¼ 8

Z d3p

ð2�Þ3
Z d3q

ð2�Þ3 Jaðk;p; q;�;�0ÞJbðk;p; q;�;�0Þe6�0P0ðjk� pjÞP0ðqÞP0ðjp� qjÞ: (3.13)

The kernels Ia and Ja are, respectively, given by

Iaðk; q;�;�0Þ ¼
Z �

�0

d�0Galðkj�;�0Þ�lrsðq; k� qÞ ~Grðqj�0; �0Þ ~Gsðjk� qjj�0; �0Þ; (3.14)

Jaðk;p; q;�;�0Þ ¼
Z �

�0

d�1

Z �

�0

d�2Galðkj�;�1Þ�lrsðp;k� pÞGrcðpj�1; �2Þ�cpqðq;p� qÞ ~Gpðqj�2; �0Þ

� ~Gqðjp� qjj�2; �0Þ ~Gsðjk� pjj�1; �0Þ: (3.15)

The diagram corresponding to the above expressions is
shown in Fig. 3. Note that in deriving the expression (3.11),
we do not expand the propagators Gab and their nonper-
turbative properties still hold. In order to evaluate
Eq. (3.11), we use the analytic solution of Gab derived in
Ref. [43], where the nonlinear propagator was constructed
approximately by matching the asymptotic behaviors at
low- and high-k modes, based on Eqs. (3.6) with (3.8).
The resultant analytic solution behaves like Gab !
gabJ1ð2xÞ=x at k ! 1, where the quantity J1 is the
Bessel function with its argument x ¼ k�vðe� � e�

0 Þ,
and the velocity dispersion �v is approximately
described by the linear theory, i.e., �2

v ’ �2
v;lin ¼R

dqPlinðq; zÞ=ð6�2Þ. Note that the final results of the
power spectrum are a little bit sensitive to the high-k
behavior of the propagator, and a naive application of the
approximate solution leads to a slight shift in the amplitude
of power spectrum. While this is not serious at all for the
leading-order calculation, it amounts a percent-level shift
when we consider the higher-order correction, PðMC2Þ

ab . As
discussed by Crocce and Scoccimarro [34], one possible
reason for this may be a small contribution from the sub-
leading corrections in the propagator. In order to remedy
the effect of small corrections, we follow the method
proposed by Ref. [34]. We define

�ðzÞ �
�Rkmax

0 dqPnlðq; zÞRkmax

0 dkPlinðk; zÞ
�
1=2

; (3.16)

where Pnl means the nonlinear matter power spectrum.
Then, the subleading correction can be corrected by simply

multiplying the factor � by �v, i.e., �v ! �ðzÞ�v. Note
that this treatment is only applied to the propagator in the
lowest-order term in Eq. (3.11), which most sensitively
affects the power spectrum amplitude on small scales.
For simplicity, we use HALOFIT [50] to compute Pnl and
adopt the cutoff wave number, kmax ¼ k�, where k� is the
nonlinear scale defined by Ref. [50].
In the rest of this paper, we present the results for the

analytic treatment based on the expression (3.11). In com-

puting the mode-coupling terms PðMC1Þ
ab and PðMC2Þ

ab , we

must first evaluate the functions Ia and Ja for a given set
of arguments, which involve the one- and two-dimensional
integrals over time �. We use the Gaussian quadrature for
these time integrations. As for the momentum integrals in
the mode-coupling terms, thanks to the symmetry of the
functions Ia and Ja, the multidimensional integrals in

PðMC1Þ
ab and PðMC2Þ

ab can be reduced to the two- and four-

dimensional integrals, respectively. We use the Gaussian

quadratures for the momentum integral in PðMC1Þ
ab . The

four-dimensional momentum integration in the mode-

coupling term PðMC2Þ
ab is performed with the Monte Carlo

technique of quasi-random sampling using the library,
CUBA [51].3

Finally, we note that the formulation and analytic treat-
ment presented here have several distinctions and similar-
ities to the other nonperturbative calculations proposed
recently. In Appendix B, we compare the present work
with a subset of these treatments, and discuss how the

2+
η η’

=
η η’

P ab(k;η,η’)

η’η s 1 s 2

+
η’η s 1 s 2

8 + ...

FIG. 3. Diagrammatic representation for the perturbative treatment of the power spectrum with the Born approximation, i.e.,
Eq. (3.11).

3http://www.feynarts.de/cuba/
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approach developed here is complementary to or expands
on these studies.

IV. IMPROVED PT VS. NUMERICAL
SIMULATIONS

In this section, particularly focusing on the BAOs, we
compare the improved PT predictions from the analytic
treatment of closure approximation with results of N-body
simulations.

A. N-body simulations

We use a publicly available cosmological N-body code
GADGET2 [52]. We ran two sets of simulations, WMAP3 and

WMAP5, in which we adopt the standard Lambda CDM

model with cosmological parameters determined from
WMAP3 and WMAP5, respectively [2,3]. The WMAP3

run is basically the same N-body run as described in
Ref. [45], and a quantitative comparison between the
leading-order results of improved PT and simulations has
been previously made. We basically use the results of
WMAP3 run to check the consistency of the present calcu-

lations with the previous work. The WMAP3 run is also
helpful to cross-check the convergence properties in the
new simulation, WMAP5, which increase the number of
realizations to 30. Table I summarizes the parameters
used in the simulations. The initial conditions were created
with the 2LPT code [53] at initial redshift zini ¼ 31, based
on the linear transfer function calculated from CAMB [54].
The number of meshes used in the particle-mesh compu-
tation is 1; 0243. We adopt a softening length of
0:1h�1 Mpc for tree forces.

We store three output redshifts for the WMAP3 run,
whereas we select four output redshifts for WMAP5 run; z ¼
3, 1, and 0 (WMAP3): z ¼ 3, 2, 1, and 0.5 (WMAP5). Using
these outputs, we compute the power spectrum and two-
point correlation function in both real and redshift spaces.

The calculation of the matter power spectrum adopted
here is basically the same treatment as in Ref. [45]. The
standard method to compute the power spectrum is to
square the Fourier transform of the density field and to
take an average over realizations and Fourier modes. This
is given by

P̂ðknÞ ¼ 1

Nk
nN

run

XNrun

m¼1

X
kmin
n <jkj<kmax

n

j�m-thðkÞj2;

kn � 1

Nk
n

X
kmin
n <jkj<rmax

k

jkj;
(4.1)

where Nk
n and N

run are the number of Fourier modes in the
n-th wave number bin and the number of realizations, and
kmin
n and kmax

n are the minimum and the maximum wave
number of the n-th bin, respectively. The quantity �m-thðkÞ
means the density field in Fourier space obtained from the
m-th realization data. We use the cloud-in-cells interpola-
tion for the density assignment of particles onto a 1; 0243

mesh, and correct the window function. Note that the
power spectra measured from the standard treatment above
suffer from the effect of finite-mode sampling discussed by
Ref. [55]. The resultant power spectrum deviates from the
prediction for the ideal ensemble average, and exhibits the
anomalous growth of power spectrum amplitude on large
scales. In order to reduce the effect of finite-mode sampling
at k & 0:1h Mpc�1, we multiply the measured power spec-

trum by the ratio, P̂PTðkÞ=PlinðkÞ, where the quantity

P̂PTðkÞ is calculated from the perturbation theory up to
the third order in the density field, and PlinðkÞ is the input
linear power spectrum extrapolated to a given output red-

shift. Note that in computing P̂PTðkÞ, we use the Gaussian-
sampled density field used to generate the initial condition
of each N-body run. With this treatment, the individual
random nature of each N-body run is weakened, and the
errors associated with anomalous growth is reduced.4

For the estimation of two-point correlation function, we
adopt the grid-based calculation using the fast Fourier
transformation (FFT). In this treatment, similar to the
power spectrum analysis, we first compute the square of
the density field on each grid of Fourier space. Then,
applying the inverse Fourier transformation, we take the
average over realization and distance, and obtain the two-
point correlation function. Schematically, this is expressed
as

�̂ðrnÞ ¼ 1

Nr
nN

run

XNrun

m¼1

X
rmin
n <jrj<rmax

n

dFFT�1½j�m-thðkÞj2; r�;

(4.2)

where the operation dFFT�1
stands for the inverse FFT of

the squared density field on each grid. Note here that rn is

TABLE I. Parameters of N-body simulations.

Name Lbox # of particles zini # of runs �m �� �b=�m h ns �8

WMAP3 1000h�1 Mpc 5123 31 4 0.234 0.766 0.175 0.734 0.961 0.76

WMAP5 1000h�1 Mpc 5123 31 30 0.279 0.721 0.165 0.701 0.96 0.817

4In Ref. [45], the correction to the effect of finite-mode
sampling has been applied to the real-space power spectra.
Here, we extend it to compute the redshift-space power spectrum
by simply replacing the ratio P̂PTðkÞ=PlinðkÞ with that in redshift
space. To be precise, we compute the multipole moments of the
redshift-space power spectrum, and the ratio, P̂ðSÞ;PT

‘ ðkÞ=PðSÞ
‘;linðkÞ,

is multiplied for each multipole spectrum (see Sec. IVC 1).
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simply chosen at the center of the n-th radial bin, i.e., rn ¼
ðrmin þ rmaxÞ=2.

Equation (4.2) usually suffers from the ambiguity of the
zero-point normalization in the amplitude of two-point
correlation function, because of the lack of the low-k
powers due to the finite boxsize of the simulations. With
the 1; 0243 grids and the boxsize of Lbox ¼ 1h�1 Gpc;
however, we can safely evaluate the two-point correlation
function around the baryon acoustic peak. Comparison
between different computational methods, together with
convergence check of this method, is presented in
Appendix C.

Finally, similar to the estimation of power spectrum, the
finite-mode sampling also affects the calculation of the
two-point correlation function. We thus correct it by sub-
tracting and adding the extrapolated linear density field as

�̂ðrÞ � �̂linðrÞ þ �linðrÞ, where �̂lin is the correlation func-
tion estimated from the Gaussian density field, and �lin is
the linear-theory prediction of two-point correlation
function.

B. Results in real space

1. Power spectrum

Before addressing a quantitative comparison between
the N-body simulation and improved PT, we first discuss
the convergence properties of the improved PT, and con-
sider how well the calculation based on the improved PT
does improve the prediction compared to the standard PT.

Figure 4 plots the overall behaviors of the nonlinear
power spectrum of density fluctuation, Pðk; zÞ �
P11ðk; zÞ, given at z ¼ 0, adopting the WMAP3 cosmologi-
cal parameters. In the left panel, the results of standard PT
are shown, and the contributions to the total power spec-
trum up to the two-loop diagrams are separately plotted.
On the other hand, the right panel shows the results of the
improved PT. We plot the contributions up to the second-
order Born approximation labeled as MC1 and MC2.
In Fig. 4, there are clear distinctions between standard

and improved PTs. While the loop corrections in standard
PT change their signs depending on the scales and exhibit
an oscillatory feature, the corrections coming from the
Born approximation in the improved PT are all positive
and mostly the smooth function of k. Further, the higher-
order corrections in the improved PT have a remarkable
scale-dependent property compared to those in the stan-
dard PT; their contributions are well localized around some
characteristic wave numbers, and they are shifted to the
higher k modes as increasing the order of PT. These trends
clearly indicate that the improved PTwith closure approxi-
mation has a better convergence property. Qualitative be-
haviors of the higher-order corrections quite resemble the
predictions of RPT by Crocce and Scoccimarro [34].
Now, let us focus on the behavior of BAOs, and

discuss how the convergence properties seen in Fig. 4
affect the predictions of BAO features. In Fig. 5, adopting
the WMAP3 cosmological parameters, we plot the ratio
PðkÞ=Pno-wiggleðkÞ, where the function Pno-wiggleðkÞ is the

FIG. 4 (color online). Convergence properties of standard PT (left) and improved PT (right) expansions in the matter power
spectrum. In each panel, the higher-order contributions to the total power spectrum labeled as Pnl is separately plotted. In the left panel,

one-loop and two-loop corrections in the standard PT P
1-loop
11 and P

2-loop
11 , are plotted, while in the right panel, the mode-coupling

corrections PðMC1Þ
11 and PðMC2Þ

11 in the improved PT given at Eqs. (3.12) and (3.13), respectively, are shown (labeled as MC1 and MC2),

together with the first term in Eq. (3.11) [labeled as G2P0]. Note that the dashed lines indicate the negative values.
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linear power spectrum from the smooth transfer function
neglecting the BAO feature in Ref. [23]. In the left panel,
N-body simulations are compared with the leading-order
results of PT predictions, i.e., standard PT, including the
one-loop correction (dashed), and improved PT with the
first-order Born correction (solid). Apart from the wiggle
structure, the amplitude of standard PT prediction mono-
tonically increases with wave number k, and tends to over-
estimate the results of N-body simulations. On the other
hand, the amplitude of improved PT prediction rapidly
falls off at a certain wave number, and the deviation from
N-body results becomes significant. However, a closer
look at the behavior on large scales reveals that improved
PT prediction gives a better agreement with simulation.
The results are indeed consistent with the previous findings
in Ref. [45]. The situation becomes more impressive when
we add the next-to-leading-order corrections. As shown in
the right panel, the improved PT gets the power on smaller
scales, and reproduces the N-body results in a wider range
of wave number. By contrast, the prediction of standard PT
depicted as dashed lines seems a little bit subtle. Compared
to the one-loop results, the amplitudes of the standard PT
prediction, including the two-loop correction, are slightly
reduced, and the agreement with N-body simulation seems
apparently improved a bit at higher redshift. At lower
redshift z ¼ 0, however, the correction coming from the

two-loop order becomes significant, and the prediction
eventually underestimates the simulation. The reason for
these behaviors basically comes from the competition
between positive and negative contributions of the one-
loop and two-loop corrections, respectively, (see the left
panel of Fig. 4). These are consistent with those findings in
Ref. [46] (see Fig. 1 of their paper).
In Fig. 6, to clarify the range of agreement in more

quantitative ways, we plot the fractional difference divided
by the smoothed reference spectra, ½PN-bodyðkÞ �
PPTðkÞ�=Pno-wiggle, where the quantity PPTðkÞ implies the

standard and improved PT predictions in the left and right
panels, respectively. Here, the vertical arrows represent the
maximum wave number k1%, below which the leading-
order predictions of standard or improved PT reproduce
the N-body results quite well within 1% accuracy.
According to Nishimichi et al. [45], this has been deter-
mined by the detailed comparison between models and
simulations, and is empirically characterized by solving
the following equation:

k21%
6�2

Z k1%

0
dqPlinðq; zÞ ¼ C (4.3)

with C ¼ 0:18 for the one-loop standard PT, and C ¼ 0:35
for the improved PT up to the first-order Born correction.

FIG. 5 (color online). Ratios of power spectrum to smoothed reference spectrum, PðkÞ=Pno-wiggleðkÞ, given at redshifts z ¼ 3 (top), 1
(middle) and 0 (bottom). Cosmological parameters used in the WMAP3 simulations are adopted to compute the power spectrum from
standard PT and improved PT, and the results are compared with N-body simulations (symbols with error bars). The reference
spectrum Pno-wiggleðkÞ is calculated from the no-wiggle formula of the linear transfer function in Ref. [23]. In each panel, dotted,

dashed, and solid lines represent the linear, standard PT, and improved PT results, respectively. In the left panel, the leading-order
results of standard PT and improved PT are shown, while in the right panel, the results including the higher-order corrections are
plotted.
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Comparing these convergence regimes of the leading-
order calculation with results of fractional differences,
Fig. 6 shows that the inclusion of higher-order terms
does not always improve the prediction in the standard
PT treatment. By contrast, the improved PT calculation
does improve the predictions, and the range of agreement
between N-body simulations and the predictions becomes
wider.

In Fig. 7, we plot the results for the WMAP5 simulations,
which have relatively large value of �8 compared to the
WMAP3 run (see Table I). The left and right panels, respec-

tively, plot the ratio of power spectrum amplitude and the
fractional difference betweenN-body results and improved
PT predictions. With the 30 runs of N-body simulations,
the errors in the power spectrum amplitude are greatly
reduced, and it is clearly shown that the predictions of
improved PT, including the higher-order corrections, al-
most coincide with the N-body results beyond the conver-
gence regime of the leading-order calculations (indicated
by vertical arrows), and achieve a subpercent accuracy.
From this plot, the maximum wave number k1% at each
redshift can be estimated by comparing the predictions
with N-body results as k1% ¼ 0:20h Mpc�1 (z ¼ 0:5),
0:23h Mpc�1 (z ¼ 1), 0:33h Mpc�1 (z ¼ 2), and
0:47h Mpc�1 (z ¼ 3). These values roughly match
those determined from the criterion (4.3) with the constant
C ¼ 0:70.

Although we did not store the z ¼ 0 data of the WMAP5

run to compare with the analytic prediction, Eq. (4.3) using
this constant value implies that the maximumwave number
for improved PT becomes k1% ¼ 0:15h Mpc�1, which
contrasts with the one for the one-loop prediction of stan-
dard PT, k1% ¼ 0:09h Mpc�1. Thus, the improved PT
including up to the second-order Born approximation is
expected to be still accurate at z ¼ 0, and it can cover the
major part of the BAOs. Amore detailed comparison at low
redshift, including other analytic prescriptions, can be
found in Ref. [46].

2. Correlation function

Having confirmed the excellent properties of the im-
proved PT, we turn our focus on the baryon acoustic
peak in the two-point correlation function. The two-point
correlation function can be computed from the power
spectrum as

�ðrÞ ¼
Z dkk2

2�2
P11ðkÞ sinðkrÞkr

: (4.4)

The top panel of Fig. 8 shows the two-point correlation
functions around the baryon acoustic peak at different
redshifts z ¼ 0:5, 1, 2, and 3 (from top to bottom) in the
case adopting the WMAP5 cosmological parameters. Also,
the lower panel plots the fractional differences between the

FIG. 6 (color online). Difference between N-body and PT results divided by the reference spectrum, ½PN-bodyðkÞ �
PPTðkÞ�=Pno-wiggleðkÞ. The left panel shows the results for standard PT up to the two-loop order. The right panel presents the case

of improved PT including the corrections up to the second-order Born approximation of the mode-coupling term. In both panels,
vertical arrows represent the wave numbers k1% of standard and improved PT (from left to right), below which the leading-order PT
predictions reproduce the N-body simulations well within 1% accuracy (see text in details).
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N-body and improved PT results, i.e., ½�N-bodyðrÞ �
�PTðrÞ�=�PTðrÞ.

After the correction of finite-mode sampling, the error
bars in N-body simulations are greatly reduced, and the
deviation of the N-body results from linear-theory predic-
tions (depicted as dotted lines) is clearly seen. As decreas-
ing the redshift, the baryon acoustic peaks become smeared
and the position of the peak are slightly shifted to a smaller
scale. These trends can be accurately described by the
leading-order calculation of improved PT, and the agree-
ment between the N-body results and the predictions is
excellent. The fractional error in amplitude is well within a
few percent, except for a large separation beyond the
location of baryon acoustic peak, where the accuracy of
the N-body results tends to worsen due to the limited
simulation boxsize. Note that the corrections coming
from the higher-order Born approximation do not alter
the behaviors at r > 30h�1 Mpc, and their amplitudes
are negligibly small compared to the error bars of the
N-body simulations. Thus, the leading-order prediction
seems robust for describing the baryon acoustic peak.

It has been recently suggested by several authors that the
smearing effect on baryon acoustic peak is mostly attrib-
uted to the random motion of mass distribution [56], and it
is approximately described by the convolution of the

Gaussian smoothing function (e.g., [35,57]). In the lan-
guage of improved PT, this effect corresponds to the dis-
appearance of the memory of the initial condition, which is
encoded in the nonlinear propagator. Strictly speaking, the
asymptotic behavior of the nonlinear propagator is not a
Gaussian form in closure approximation, although the
damping behavior manifestly exhibits in the approximate
solution of nonlinear propagator. Hence, the prediction for
the two-point correlation function seems robust against the
high-k behavior of the nonlinear propagator.
Finally, it should be noted that the standard PT predic-

tion fails to converge the integral in Eq. (4.4), because of
the high-k behavior of the power spectrum. This is true
even when including the higher-order correction of two-
loop order. Thus, the successful results of improved PT
prediction may be regarded as an outcome of nonperturba-
tive property.

C. Results in redshift space

In practical observation with galaxy redshift surveys, the
observed galaxy distribution is inevitably distorted due to
the peculiar velocity of each galaxy. The so-called redshift-
space distortion is known to alter the shape of the power
spectrum in two different ways (e.g., [58]). One is the

FIG. 7 (color online). Comparison between N-body results and improved PT predictions in the case adopting WMAP5 cosmological
parameters. From top to bottom, the results at z ¼ 3, 2, 1, and 0.5 are shown. The improved PT predictions plotted here include the
corrections up to the second-order Born approximation of the mode-coupling term, PMC2. Left: ratio of power spectrum to the
smoothed reference spectra PðkÞ=Pno-wiggleðkÞ. Solid and dotted lines are improved PT and linear-theory predictions, respectively.

Right: difference between N-body and improved PT results normalized by the no-wiggle formula ½PN-bodyðkÞ � PPTðkÞ�=Pno-wiggleðkÞ.
In each panel, vertical arrows represent the wave number k1% for the leading-order predictions of standard and improved PT (from left
to right).
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apparent enhancement of the clustering signal called
Kaiser effect [59], which originates from the bulk motion
of mass distribution falling into the massive halos. Another
important effect is the finger-of-God (FoG) effect, which
effectively suppresses the power spectrum amplitude on
small scales by the virialized random motion of the mass
residing at a halos.

Although a rigorous nonperturbative treatment of the
redshift-space distortion is difficult, these two effects has
been phenomenologically modeled as (e.g., [60–63])

PðSÞðk;	Þ ¼ ð1þ	2fÞ2P11ðkÞDFoGðk	Þ; (4.5)

where	 is the cosine of the angle between the line-of-sight
direction and the Fourier mode k, and f is the logarithmic
derivative of linear growth factor, defined as f �
d lnD=d lna. The function DFoG represents the damping
function which mimics the FoG effect, and it asymptoti-
cally approaches unity in the k ! 0 limit, where the linear-
theory formula by Kaiser is recovered.

Recently, Scoccimarro [64] proposed an improved ver-
sion of the model (4.5) to properly take account of the
nonlinear evolution of the density and velocity fields on the
Kaiser effect (see also [65,66]). This is expressed as

PðSÞðk;	Þ ¼ ½P11ðkÞ þ 2f	2P12ðkÞ þ f2	4P22ðkÞ�
� expf�ðf	k�vÞ2g: (4.6)

Here, the quantity �v is the one-dimensional velocity
dispersion given by

�2
v ¼ 1

3

Z d3q

ð2�Þ3
P22ðqÞ
q2

: (4.7)

In what follows, we adopt the model (4.6) to calculate
the redshift-space power spectrum. Although this model is
still phenomenological and may not be regarded as the best
one, a comparison between the model predictions and
N-body simulations shows that the prediction based on
the model (4.6) gives a better result. Taking Eq. (4.6) as a
canonical model of the redshift-space distortion, we will
investigate the extent to which the model (4.6) faithfully
reproduces the N-body results well, and discuss how to
improve the model prescription.

1. Power spectrum

For a quantitative comparison of model prediction with
the N-body simulation, we compute the multipole mo-

ments of the two-dimensional power spectrum PðSÞðk;	Þ:

PðSÞ
‘ ðkÞ ¼ 2‘þ 1

2

Z 1

�1
d	PðSÞðk;	ÞP ‘ð	Þ; (4.8)

with P ‘ being the Legendre polynomials.
Substituting the model (4.6) into the above, the mono-

pole, quadrupole, and hexadecapole contribution to the
redshift-space power spectrum are analytically expressed
as

PðSÞ
0 ðkÞ ¼ p0ðkÞ; (4.9)

PðSÞ
2 ðkÞ ¼ 5

2f3p1ðkÞ � p0ðkÞg; (4.10)

PðSÞ
4 ðkÞ ¼ 9

8f35p2ðkÞ � 30p1ðkÞ þ 3p0ðkÞg; (4.11)

where the function pnðkÞ is defined by

pnðkÞ ¼ 1

2

�
�ðnþ 1=2; 
Þ


nþ1=2
P11ðkÞ

þ 2
�ðnþ 3=2; 
Þ


nþ3=2
fP12ðkÞ

þ �ðnþ 5=2; 
Þ

nþ5=2

f2P22ðkÞ
�
: (4.12)

The quantity �ðn; 
Þ is the incomplete gamma function of
the first kind

�ðn; 
Þ ¼
Z 


0
dttn�1e�t (4.13)

with its argument 
 ¼ ðkf�vÞ2.

FIG. 8 (color online). Top: Two-point correlation functions in
real space adopting the WMAP5 cosmological parameters. The
solid lines represent the leading-order predictions of improved
PT, while the dotted lines show the linear-theory results. Bottom:
Fractional differences between N-body and improved PT results,
½�N-bodyðrÞ � �PTðrÞ�=�PTðrÞ. In both panels, the symbols with

error bars indicate the N-body results averaged over the 30
realizations in which the effect of finite-mode sampling is
corrected: z ¼ 0:5 (open stars), 1 (open squares), 2 (filled
triangles), and 3 (crosses).
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Figure 9 shows the monopole (left) and quadrupole
(right) moments of the redshift-space power spectra at
different redshifts, obtained from the WMAP5 simulations.
We do not plot here the hexadecapole contributions, be-
cause the power spectrum estimated from the N-body
simulations is still noisy even with the 30 realizations. In
each panel of Fig. 9, the dashed lines indicate the improved
PT predictions based on the model (4.6), where the cor-
rections up to the second-order Born approximations are
included. Note that the velocity dispersion �v is computed
from the linear theory. Clearly, the predictions all under-
estimate the N-body results, and the agreement between
predictions and N-body simulations is restricted to a quite
narrow range on large scales. As a reference, we also show
the maximum wave number k1% of the improved PT pre-
diction (vertical arrows), in which we include the correc-
tions up to the second-order Born approximation in real
space (see Fig. 7).

The reason why the prediction generically underesti-
mates the N-body simulations would be partly attributed
to the calculation of the velocity dispersion �v using the
linear theory. It has been advocated by several authors that
the suppression of power spectrum by FoG effect is origi-
nated from the nonlinear structure of virialized halos, and

FIG. 9 (color online). Ratio of power spectra to smoothed reference spectra in redshift space, PðSÞ
‘ ðkÞ=PðSÞ

‘;no-wiggleðkÞ, from the WMAP5

simulations. The reference spectrum PðSÞ
‘;no-wiggle is calculated from the no-wiggle approximation of the linear transfer function, and the

linear theory of the Kaiser effect is taken into account. The left panel shows the monopole power spectra (‘ ¼ 0), and the right panel
shows the quadrupole spectra (‘ ¼ 2). Solid and dashed lines represent the results from the improved PT adopting the model of
redshift-space distortion (4.6). To plot the results, the linear theory was used to compute �v in dashed lines, while in solid lines, �v was
determined by fitting the predictions to the N-body simulations. In each panel, vertical arrow indicates the maximum wave number k1%
for improved PT prediction including up to the second-order Born approximation, which has been estimated from Fig. 7 (see
Sec. IVB 1 for definition of k1%).

FIG. 10. Redshift evolution of velocity dispersion �v. While
the solid lines represent the linear-theory prediction, the open
squares indicate the results obtained by fitting the model (4.6) to
the monopole and quadrupole spectra of N-body simulations
(see Fig. 9).
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thereby the linear-theory estimation of �v may be inappro-
priate. In this respect, we admittedly regard �v as an
uncontrollable parameter, which should be determined by
fitting the predictions to the N-body results.

The solid lines in each panel of Fig. 9 show the results of
redshift-space spectra adopting the fitted values of �v. In
estimating �v, both the monopole and quadrupole spectra
were fitted to the N-body results in the range of 0 � k �
k1%. Figure 10 summarizes the fitted results of �v, which
significantly deviate from the linear-theory prediction at
higher redshifts.

Then, apparently, overall agreement between prediction
and simulation becomes fairly improved, although as a
trade-off, small discrepancy manifests at the low-k mode,
where the N-body results rather agree well with the pre-
diction adopting �v calculated from linear theory. In
Fig. 11, the left and right panels, respectively, plot the
fractional differences of the monopole and quadrupole
moments between the model predictions andN-body simu-
lations. Except for the narrow range of low-k modes, a
percent-level agreement is almost achieved for the mono-
pole power spectrum. This is true at least within the con-
vergence regime calibrated in real space (see vertical
arrows in Fig. 11). However, the fractional error of the
quadrupole power spectrum still exhibits a little bit larger

discrepancy, signaling the fact that the model (4.6) misses
something important for the higher-multipole moment of
redshift-space distortion.
To see the significance of this deviation in practice, in

Fig. 11, the expected 1-� errors limited by the cosmic

variance �PðSÞ
‘ ðkÞ are shown, depicted as the shaded re-

gion. Here, we specifically consider the ground-based BAO
surveys like the WFMOS survey [28] and BOSS [29],
assuming the survey volumes of V ¼ 1h�3 Gpc3 at z ¼
3 and 4h�3 Gpc3 at z ¼ 1 for the WFMOS survey, and
V ¼ 4:5h�3 Gpc3 at z ¼ 0:5 for BOSS.5 Based on the
approximation that the density field is well described by
a Gaussian random field, the cosmic-variance error

�PðSÞ
‘ ðkÞ can be estimated as

½�PðSÞ
‘ ðkÞ�2 ¼ 2

Nk

�2
P;‘ðkÞ; (4.14)

where the quantity Nk is the number of Fourier modes

FIG. 11 (color online). Difference between N-body and PT results divided by the reference spectrum in redshift space, i.e.,

½PðSÞ
‘;N-bodyðkÞ � PðSÞ

‘;PTðkÞ�=PðSÞ
‘;no-wiggleðkÞ. The left and right panels, respectively, represent the results from monopole and quadrupole

power spectra. Note that the improved PT predictions are computed based on the model (4.6) adopting the fitted value of �v. For
comparison, the statistical errors limited by the cosmic variance of the survey volumes roughly corresponding to those of the WFMOS-
like survey [28] and BOSS [29] are shown as shaded regions in the panels of z ¼ 3, z ¼ 1, and z ¼ 0:5, assuming, respectively, the
survey volumes of V ¼ 1h�3 Gpc3, 4h�3 Gpc3 and 4:5h�3 Gpc3. Note that in each panel, vertical arrow indicates the maximum wave
number k1% determined from Fig. 7 by comparison between N-body and improved PT results.

5Strictly speaking, the BOSS project is a part of Sloan Digital
Sky Survey III, aiming at precisely measuring the cosmological
distance and expansion rate at z ¼ 0:35, 0.6 and z ¼ 2:5. Here,
we only consider the low-z measurement with survey depth
0:2 & z & 0:8.
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within a given bin at k, and is given by Nk ¼
4�k2�k=ð2�=LboxÞ3=2 ¼ Vk2�k=ð2�Þ2. The function
�P;‘ is

�2
P;‘ðkÞ ¼

ð2‘þ 1Þ2
2

Z 1

�1
d	fPðSÞðk;	ÞP ‘ð	Þg2: (4.15)

The expression (4.14) with (4.15) is a generalization of the
cosmic-variance error in real space (e.g., [47,67–69]) to the
multipole moments in redshift space. Note that the error

�PðSÞ
‘ ðkÞ depends on the bin width �k, for which we

simply adopt the same bin size as used in the power
spectrum analysis of N-body data. The analytic estimate

of �PðSÞ
‘ based on Eq. (4.14) is roughly consistent with the

statistical errors estimated from the N-body data of 30
realizations.

Comparison between the cosmic-variance errors and
fractional differences shows that the discrepancy seen in
the quadrupole power spectrum is definitely large, and it
eventually exceeds the statistical error at large k modes.
Since this has happened inside the valid range of the
improved PT calibrated in real space (indicated as vertical
arrows), we conclude that the current model prediction
with (4.6) is insufficient to describe the higher-multipole
moments of BAOs, and a more elaborate work on the
models of redshift-space distortion is needed for upcoming
BAO measurement.

2. Correlation function

Finally, we discuss the correlation functions in redshift
space. Similar to the power spectrum, we apply the multi-
pole expansion to the anisotropic two-point correlation

function as

�ðSÞðsk; s?Þ ¼
Z d3k

ð2�Þ3 P
ðSÞðk;	Þeik�s

¼ X
‘: even

�ðSÞ
‘ ðsÞP ‘ð�Þ (4.16)

with � ¼ sk=s. The multipole moment of the correlation

function �ðSÞ
‘ is directly related to the Fourier counterpart

PðSÞ
‘ through

�ðSÞ
‘ ðsÞ ¼ i‘

Z dkk2

2�2
PðSÞ
‘ ðkÞj‘ðksÞ: (4.17)

Figure 12 shows the monopole (left), quadrupole
(middle) and hexadecapole (right) moments of correlation
function. In each panel, the N-body results are compared
with the predictions from linear theory (dotted) and the
leading-order calculation of improved PT (solid) adopting
the model (4.6) with the linear-theory prediction of �v.
Note that the predictions of improved PT are hardly
changed by including the higher-order corrections and/or
using the fitted value of �v, at least around the baryon
acoustic peak, and the systematic differences between in-
cluding and ignoring the corrections are well within the
error bars of N-body simulations.
As anticipated from the results in real space, the baryon

acoustic peaks in the monopole moment tend to be smeared
as decreasing redshift, but the effect seems a little bit
stronger than those in real space. This is due to the addi-
tional effect coming from the redshift distortion. Although
no prominent signal of the BAOs exists in the higher-

FIG. 12 (color online). Top: Correlation function in redshift space. The left, middle, and right panel, respectively, show the
monopole, quadrupole, and hexadecapole contributions to the anisotropic correlation function �ðSÞ. The solid and dotted lines are the
predictions from the improved PT based on the model (4.6) and linear theory, respectively. Note that only the leading-order Born
approximation to the mode-coupling term is included in the improved PT. z ¼ 0:5 (red); z ¼ 1 (magenta); z ¼ 2 (cyan); z ¼ 3 (green),
from top to bottom in left and right panels, and from bottom to top in middle panel. For comparison, the statistical errors limited by the
cosmic variance of the survey volumes V ¼ 1h�3 Gpc3, 4h�3 Gpc3 and 4:5h�3 Gpc3 are estimated from Eq. (4.18), and are depicted
as shaded regions around the N-body results at z ¼ 3, z ¼ 1 and z ¼ 0:5, respectively. The cosmic-variance error for hexadecapole is
not shown here because of the large scatter. Bottom: Fractional differences of the results between N-body simulations and improved
PT predictions, ½�N-bodyðsÞ � �PTðsÞ�=�PTðsÞ for different redshifts at z ¼ 0:5 (open stars), z ¼ 1 (open squares), z ¼ 2 (filled

triangles), and z ¼ 3 (crosses).

NONLINEAR EVOLUTION OF BARYON ACOUSTIC . . . PHYSICAL REVIEW D 80, 123503 (2009)

123503-15



multipole moments, the same tendencies can be seen in the
quadrupole and hexadecapole moments. The improved PT
calculations are broadly consistent with N-body results,
but small discrepancies manifest around the baryon acous-
tic peak and trough. The lower panels of Fig. 12 showing
the fractional differences imply that these are at most a 5%
effect in amplitude, except for the hexadecapole case with
large error bars of simulation. It is interesting to note that
no noticeable redshift dependence appears in the fractional
differences, indicating that the discrepancies may be at-
tributed to the model of redshift-space distortion.
Furthermore, it turns out that these are well within the
cosmic-variance errors of the ground-based BAO measure-
ment, indicated as the shaded region. Assuming that the
underlying density field is well described by a Gaussian
random field, the cosmic variance for the multipole corre-

lation functions �ðSÞ
‘ can be written as (see [57,70,71] for

cosmic-variance errors in real space)

½��ðSÞ
‘ ðsÞ�2 ¼ 2

V

Z dkk2

2�2
fj‘ðksÞ�P;‘ðkÞg2 (4.18)

with �P;‘ given by Eq. (4.15). Note that the analytic

estimation of cosmic-variance errors ��ðSÞ
‘ shown in

Fig. 12 reproduce the N-body results quite well.
Hence, compared to the power spectrum in redshift

space, the correlation functions obtained from the
N-body simulation and analytic calculation can have a
better agreement. Presumably, this is because the acoustic
peak structure in the correlation function is mostly attrib-
uted to the low-k behavior of the BAOs, and the power
spectrum at low-k modes is accurately described by the
model (4.6) with the linear-theory prediction of �v. In
other words, the baryon acoustic peak would be robust
against the nonlinear effects at high-k modes (see also
[35,36,72]). This implies that even the prediction at the
current level is sufficient to characterize the acoustic
peak in the correlation function, and it can be used as an
accurate theoretical template for future precision BAO
measurement.

Note, however, that the measured amplitudes of the two-
point correlation function are strongly correlated between
different scales. In practice, not only the diagonal compo-
nent but also the off-diagonal components of the covari-
ance of the correlation function must be considered for a
reliable estimation of cosmological distance, and a more
careful study is needed.

V. DISCUSSION AND CONCLUSIONS

In this paper, we have presented the improved PT cal-
culations of the matter power spectrum and two-point
correlation function in real and redshift spaces. Based on
the closure approximation of the renormalized PT treat-
ment, a closed set of the nonperturbative expressions for
power spectrum and propagator is obtained. The resultant

expression includes the effect of resummation for a class of
loop diagrams at infinite order, and thereby the conver-
gence of higher-order contributions is expected to be im-
proved. Employing the Born approximation, we have
analytically calculated the nonlinear power spectrum, and
compared the convergence properties of improved PTwith
those of standard PT by explicitly computing the higher-
order corrections.
We have also made a detailed comparison between the

improved PT result and N-body simulations. With a large
boxsize and many realization data of N-body simulations,
the statistical errors of two-point statistics are greatly
reduced by the correction of the effect of finite-mode
sampling, and this enables us to investigate the conver-
gence check of numerical and analytic calculations at a
percent level. Then, specifically focusing on the behaviors
of BAOs, the power spectrum and two-point correlation
functions are calculated in both real and redshift spaces. In
redshift space, the effect of redshift-space distortion, which
changes the clustering pattern of mass distribution,
should be incorporated into the improved PT predictions.
In this paper, adopting the model proposed by Ref. [64]
[Eq. (4.6)], we have quantified the extent to which the
current model description faithfully reproduces the
N-body results, and clarified the key ingredients toward
an improved prescription of redshift-space distortion.
Our important findings are summarized as follows:
(i) The improved PT expansion based on the Born ap-

proximation has better convergence properties, in
marked contrast with the standard PT expansion.
The corrections coming from the mode-coupling
term are well-localized positive functions of wave
numbers, and their contributions tend to be shifted to
a higher k region as increasing the order of pertur-
bation. Thus, the inclusion of higher-order correc-
tions stably improves the prediction, and the range of
agreement with N-body results becomes wider in
wave number.

(ii) In real-space power spectrum, the improved PT pre-
diction including up to the second-order Born cor-
rection seems essential for modeling BAO precisely.
We estimated the maximum wave number k1%, be-
low which the results of both the N-body simulation
and improved PT calculation converge well within
the 1% accuracy. The resultant value of k1% can be
summarized as Eq. (4.3) with the constant value C ¼
0:7, which provides a way to estimate k1% in a
cosmology independent manner. On the other hand,
if we consider the two-point correlation function in
real space, the leading-order calculation turns out to
be sufficiently accurate, and no higher-order correc-
tion is needed to describe the nonlinear evolution
of baryon acoustic peak seen in the N-body
simulations.

(iii) Modeling redshift-space power spectrum with
Eq. (4.6) gives a broadly consistent result with
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N-body simulations, if we regard the velocity dis-
persion �v as a fitting parameter. However, discrep-
ancy between improved PT predictions and N-body
results has appeared in the quadrupole power spec-
trum, and it becomes larger than the statistical errors
limited by the cosmic variance of the survey volume
V� a few h�3 Gpc3. This is true even in the valid
range of improved PT, k & k1%. On the other hand,
while a small discrepancy has been also found in the
two-point correlation, it turns out that the discrep-
ancy is well within the cosmic-variance error, and
even the leading-order prediction using the linear-
theory estimate of �v can be used as an accurate
theoretical template for future ground-based BAO
measurement.

The recently proposed techniques to deal with the non-
linear gravitational clustering, including the present treat-
ment, have been greatly developed, and they would be a
promising cosmological tool to precisely model the shape
and amplitude of the power spectrum and/or the correlation
functions in an accuracy of subpercent level. Combining
the model of redshift-space distortion, we are now able to
discuss the nonlinear clustering in redshift space. Although
the present paper is especially concerned with the analyti-
cal work, we note that the nonperturbative formulation
with closure approximation is suited for forward treatment
in time [48], in which all orders of Born approximation can
be fully incorporated into the predictions by numerically
solving the evolution equations. This approach would be
particularly useful to study the nonlinear matter power
spectrum in general cosmological models, including the
modified theory of gravity [49].

Finally, in practical application to the precision BAO
measurements, there are several remaining issues to be
addressed in the future work. The improvement of the
model of redshift-space distortion is, of course, a very
important and urgent task. The effect of galaxy biasing is
also one of the key ingredients for modeling accurate
theoretical template, and several attempts to take account
of this effect have been recently made [36,73–78]. Another
interesting direction is to develop a fast computation of
nonlinear power spectrum or correlation function for an
arbitrary cosmological model. Recently, the statistical
sampling method for precise power spectrum emulation
has been proposed [79–81]. In this treatment, only a lim-
ited set of cosmological models can be used to predict
power spectrum at the required accuracy over the prior
parameter ranges. The analytic approaches combining this
method may provide a fast and reliable way to estimate the
two-point statistics, and the development of this method
would be valuable.
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APPENDIX A: STANDARD PERTURBATION
THEORY UP TO THE TWO-LOOP ORDER

In this Appendix, we briefly summarize the standard PT
and derive a set of perturbative solutions. Based on these
solutions, we obtain the analytic expressions for power
spectrum up to the two-loop order.
As we mentioned in Sec. III A, standard PT is the

straightforward expansion of the quantity �a, and the
perturbative solutions are obtained by order-by-order treat-
ment of Eq. (2.2). In order to systematically derive the
solutions, the Einstein-de Sitter (EdS) approximation is
often used in the literature. In the EdS approximation,
the matrix �ab given by Eq. (2.3) is replaced with the
one in the EdS universe, i.e., �ð�Þ ¼ 1 and f ¼
d lnD=d lna ¼ 1. This means that all the nonlinear growth
factors appearing in the higher-order solutions are ex-
pressed in terms of the linear growth factor DðtÞ.
Neglecting the contributions from the decaying mode, the
resultant solution for �a is then expanded as

�aðk;�Þ ¼ e��ð1Þ
a ðk;�Þ þ e2��ð2Þ

a ðk;�Þ
þ e3��ð3Þ

a ðk;�Þ þ � � � ; (A1)

The solution for each order of perturbation is expressed as

�ðnÞ
a ðkÞ ¼

Z d3k1 � � � d3kn
ð2�Þ3ðn�1Þ �Dðk� k1 � � � � � knÞ

�F ðnÞ
a ðk1; � � � ; knÞ�0ðk1Þ � � ��0ðknÞ; (A2)

where �0 is the initial density field in which we assume the
Gaussian statistic. The function F n

a is the symmetrized
kernel of the n-th order solutions. The explicit expressions

for the kernel FðnÞ
a is obtained from the recursion relation,

which can be derived by substituting the expansion (A1)
with (A2) into Eq. (2.2) [e.g., [32,47,82,83]]:

Fð1Þ
a ðk1Þ ¼ ð1; 1Þ;

FðnÞ
a ðk1; � � � ;knÞ ¼ �ðnÞ

ab

Xn�1

m¼1

�bcdðq1; q2ÞFðmÞ
c ðk1; � � � ; kmÞ

� Fðn�mÞ
d ðkn�mþ1; � � � ; knÞ (A3)

with q1 � k1 þ � � � þ km and q2 � kmþ1 þ � � � þ kn.
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Here, the matrix �ðnÞ
ab is given by

�ðnÞ
ab ¼ 1

ð2nþ 3Þðn� 1Þ
2nþ 1 2

3 2n

� �
: (A4)

Note that the kernel FðnÞ
a given above is not yet symmetric

under the permutations of arguments k1; � � � ; kn, and it
should be symmetrized

F ðnÞ
a ¼ 1

n!

X
permutations

FðnÞ
a ðk1; � � � ; knÞ: (A5)

Using the perturbative solutions, the power spectrum
defined by (3.1) is expanded as

Pabðk;�Þ ¼ e2�Pð11Þ
ab ðkÞ þ e4�fPð22Þ

ab ðkÞ þ Pð13Þ
ab ðkÞg

þ e6�fPð33Þ
ab ðkÞ þ Pð24Þ

ab ðkÞ þ Pð15Þ
ab ðkÞg þ � � � :

(A6)

Here, the quantity PðmnÞ implies the ensemble average
obtained from the m-th and n-th order perturbative solu-
tions. In the above expression, the first term at the right-
hand side is the linear power spectrum, while the second
and third terms proportional to the growth factors e4� and
e6� are, respectively, the so-called one-loop and two-loop
corrections. The explicit expressions for these corrections
become (e.g., [46,84])

Pð11Þ
ab ðkÞ ¼ uaubP0ðkÞ; (A7)

Pð22Þ
ab ðkÞ ¼ 2

Z d3q

ð2�Þ3 F
ð2Þ
a ðq; k� qÞF ð2Þ

b ðq; k� qÞ
� P0ðqÞP0ðjk� qjÞ; (A8)

Pð13Þ
ab ðkÞ ¼ 3P0ðkÞ

Z d3q

ð2�Þ3 fF
ð3Þ
a ðk; q;�qÞ

þF ð3Þ
b ðk; q;�qÞgP0ðqÞ; (A9)

Pð33Þ
ab ðkÞ ¼ 9P0ðkÞ

Z d3pd3q

ð2�Þ6 F ð3Þ
a ðk;p;�pÞF ð3Þ

b ðk; q;�qÞ

� P0ðpÞP0ðqÞ þ 6
Z d3pd3q

ð2�Þ6
�F ð3Þ

a ðp; q; k� p� qÞF ð3Þ
b ðp; q; k� p� qÞ

� P0ðpÞP0ðqÞP0ðjk� p� qjÞ; (A10)

Pð24Þ
ab ðkÞ ¼ 12

Z d3pd3q

ð2�Þ6 fF ð2Þ
a ðp; k� pÞ

�F ð4Þ
b ðp; q;�q; k� pÞ

þF ð4Þ
a ðp; q;�q; k� pÞF ð2Þ

b ðp; k� pÞg
� P0ðpÞP0ðqÞP0ðjk� pjÞ; (A11)

Pð15Þ
ab ðkÞ ¼ 15P0ðkÞ

Z d3pd3q

ð2�Þ6 fF ð5Þ
a ðp; q; k;�p;�qÞ

þF ð5Þ
b ðp; q; k;�p;�qÞgP0ðpÞP0ðqÞ;

(A12)

where P0 is the initial power spectrum of the density field
�0 defined by Eq. (2.7), and we set ua ¼ ð1; 1Þ.
Note that the expression for one-loop power spectra can

be further reduced to the one-dimensional and two-

dimensional integral for Pð13Þ and Pð22Þ, respectively,
(e.g., [83,85–87]). In the results presented in Sec. IVB1,
we used the method of Gaussian quadratures for numerical
integration of one-loop power spectra. On the other hand,
for the two-loop power spectra, the integration cannot be

simplified except for the first term in Pð33Þ, and we need to
directly evaluate the six-dimensional integration. We
adopted the Monte Carlo integration to the two-loop power
spectra. The integration kernels for each term are generated
numerically using the recursion relation (A4) and the
condition (A5).

APPENDIX B: COMPARISON TO OTHER WORKS

In this Appendix, we collect several recent works that
attempt to improve the prediction of power spectrum and/
or two-point correlation function, and discuss their quali-
tative differences. A quantitative aspect of various analytic
methods has been recently investigated in Ref. [46]. Here,
we specifically comment on the approaches proposed by
Refs. [34,35,39,42], which are very close to our treatment.
Crocce and Scoccimarro [34]: First let us mention the

work by Ref. [34]. Although the treatment presented in the
paper are often quoted as RPT, strictly speaking, this is just
the approximate treatment, which differs from the renor-
malized PT [32]. As we mentioned in Sec. III A, renormal-
ized PT is the exact nonperturbative formulation without
any approximations, and the power spectrum given by
Eq. (3.4) is expressed as the infinite series of irreducible
loop diagrams constructed from the nonlinear propagator,
full vertex, and nonlinear power spectrum. To make the
analysis tractable, they adopted the following approxima-
tions: (i) the renormalized vertex is well described by the
(linear) vertex function; (ii) the nonlinear power spectra

that enter into the calculation of PðMCÞ
ab are all replaced with

the linear-order ones. In our language, this corresponds to
the first-order Born approximation. Then, using the ap-
proximate solution for propagator in Ref. [33], they ex-
plicitly calculated the power spectrum including the
corrections up to the two-loop order. The diagrams that
they actually computed are shown in Fig. 13.
Compared to our analytical treatment with the Born

approximation, there are two main differences. One is the
higher-order corrections that appear in the diagrams (see
Fig. 3). Another important difference is the asymptotic
behaviors in the nonlinear propagator. At k ! 1, the
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propagator used in their paper behaves like Gab !
gab exp½�x2=2�, which contrasts with Gab !
gabJ1ð2xÞ=x in our closure approximation, where gab is

the linear propagator and x is defined by x � k�vðe� �
e�

0 Þ. These distinctive features come from the partial re-
summation of a different class of higher-order terms when
constructing the approximate solution of the nonlinear
propagator (see Refs. [33,43] for details). Despite these
remarkable differences, it has been shown in Ref. [45] that
the leading-order calculations neglecting the higher-order
terms (two-loop diagram or second-order Born correction)
can produce the same results, which are indistinguishable
from each other. This is true at least on large scales, where
the agreement between N-body simulations and improved
PT predictions is better than a few percent.

Pietroni [39]: Next consider the method proposed by
Ref. [39], called time-RG method. This method is based on
the moment-based approach, and we first write down the
moment equations. In general, this produces an infinite
hierarchy of equations; however, Ref. [39] assumes a van-
ishing trispectrum in order to truncate the hierarchy. As a
result, a closed set of equations for power spectrum Pab is
obtained, which couples with the evolution of bispectrum
Babc in some nonperturbative ways. Diagrammatic repre-
sentation of this closed equations is shown in Fig. 14,
which can be compared with Fig. 2 in our treatment.
Note that in the subject of statistical theory of turbulence,
this truncation procedure is referred to as quasinormal
approximation (e.g., [44,88,89]), and it is known to have
several drawbacks; positivity of the energy spectrum is not
ensured, and it fails to recover the Kolmogolov spectrum in
the inertial range of turbulence.

Nevertheless, the advantage of this treatment, similar to
our closure approximation, is that the power spectrum can

be computed numerically by solving the evolution equa-
tions. This forward treatment seems quite efficient to bring
out the nonperturbative effects incorporated into the for-
malism, and it has a wide applicability to include various
physical effects. Recently, the formalism has been ex-
tended to deal with the effect of massive neutrinos [90].
Valageas [42]: The method proposed by Ref. [42] is

based on the path-integral formalism. Starting from the
action for the cosmological fluid Eq. (2.2), which describes
the statistical properties of the vector field �a, the large-N
expansions as a technique of quantum field theory have
been applied to derive the governing equations for power
spectrum and propagator. In Ref. [42], two kinds of ex-
pansions have been presented, leading to the two different
nonperturbative schemes, i.e., steepest descent method and
2PI effective action method. Although both methods con-
sistently reproduce the standard PT at the one-loop level,
the latter includes the nonperturbative contributions, which
are not properly taken into account by the former method.
Thus, the 2PI effective action method is expected to pro-
vide a better result. It is interesting to note that despite the
field-theoretical derivation, the resultant governing equa-
tions for the 2PI effective action method turn out to be
mathematically equivalent to those obtained from the clo-
sure approximation [43]. Hence, the diagrammatic repre-
sentation of this formalism is exactly the same as shown in
Fig. 2.
Matsubara [35]: Finally, we briefly mention the treat-

ment proposed by Ref. [35]. This is the Lagrangian-based
approach, and we begin by writing down the exact expres-
sions for matter power spectrum in terms of the displace-
ment vectors. The resultant expression is in the exponential
form, and the perturbative expansions are then applied for
the explicit calculation of the ensemble average. While a
naive expansion of the displacement vectors, together with
the solutions of Lagrangian PT, merely reproduces the
(standard) Eulerian PT results, Ref. [35] has applied a
partial expansion, and some of the terms have been kept
in the exponential form. This can be interpreted as the
partial resummation of a class of the infinite diagrams.
The resultant expression for power spectrum is quite simi-
lar to the one-loop result of standard PT, but slightly differs
from it in the sense that there appears the exponential
prefactor. As a consequence, the prediction reasonably
recovers the damping behavior of the BAOs seen in the
N-body simulations, and it also explains the smearing
effect on the baryon acoustic peak in the two-point corre-
lation function.

2+
η η’

=
η η’

P ab(k;η,η’)

η’η s 1 s 2

+
η’η

s 1 s 2

16 +...

FIG. 13. Diagrammatic representation for the perturbative treatment of the power spectrum proposed by Crocce and Scoccimarro
[34], based on the renormalized PT. This is compared with Fig. 3.

+
η’ηη η’

=
η η’

P ab(k;η,η’)

2
η1 η2

= + 2 + permutation

Babc(k1, k 2, k 3;η,η’,η’’)

FIG. 14. Diagrammatic representation of the nonperturbative
treatment proposed bPietroni [39], which can be compared with
Fig. 2.
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One noticeable point of this method is that it is rather
straightforward to generalize the calculations in real space
to those in redshift space, since the displacement vectors in
redshift space can be simply given by a linear mapping
from those in real space. Further, the computational cost is
less expensive compared to the other analytic methods.
Although the validity range of this method is restricted to
a narrow range of the low-k modes, it would be very
powerful for a fast computation of the two-point correla-
tion function.

APPENDIX C: CONVERGENCE OF DIFFERENT
COMPUTATIONAL METHODS FOR THE TWO-

POINT CORRELATION FUNCTION

In this paper, the grid-based calculation with FFT has
been used for computing the two-point correlation func-
tions from N-body data. Here, we compare it with other
computational methods and check their convergences.

Figure 15 shows the two-point correlation functions
measured at z ¼ 0:5 from the single realization of
WMAP5 simulations. The upper-left panel shows the results

from the direct pair counting. For each particle, we ran-

domly select pairs, which are accumulated for each bin of
separations, allowing for oversampling. The estimated val-
ues of two-point correlation function are then plotted for
different number of samples Nsample: Nsample ¼ 640 k,

2560 k, 10 240 k, and 40 960 k. The resultant total number
of pairs, Npair, indicated in the panel is given by Npair ¼
Nsample � Nparticle, with Nparticle ¼ 5123 being the total

number of particles. Note that the actual number of pairs
that enters into the plotted range is less than Npair. On the

other hand, the upper-right panel shows the results from the
grid-based pair-counting introduced by Barriga and
Gaztañaga [91] (see also Ref. [72]). In this method, we
first construct the density field on a grid of Ngrid cells, and

then estimate the correlation function through the pair
count on grids

�̂ðjrijjÞ ¼ 1

NpairðjrijjÞ
X
ij

�ðriÞ�ðrjÞ: (C1)

Compared to the direct pair counting, this method is com-
putationally efficient when we store the list of neighbor
particles, which contribute to a given bin of separation. We
plot the results adopting the two different number of cells,

FIG. 15 (color online). Comparison between different computational methods for two-point correlation function.

TARUYA et al. PHYSICAL REVIEW D 80, 123503 (2009)

123503-20



Ngrid ¼ 1283 and 2563. In the lower-left panel, the grid-

based calculation with FFT [see Eq. (4.2)] is used to
compute the two-point correlation function, with a differ-
ent numbers of cells,Ngrid ¼ 1283, 2563, 5123, and 1; 0243.

Note that we adopt Ngrid ¼ 1; 0243 in the analysis pre-

sented in Sec. IV. Finally, in the lower-right panel, the
results for three different methods with the largest number
of pairs or grids are collected and compared with each
other.

To check the convergence, we further evaluate the re-

siduals from the mean values �� � �̂� ��, and plot the
results in each panel of Fig. 15. Here, the mean values �� are
estimated from the ensemble average over the three differ-
ent results using the largest number of pairs or grids. As
increasing the numbers Npair or Ngrid, the results for three

different methods all approach the mean values ��, and a
few percent-level agreement is achieved over the range of
our interest (except for the vicinity of zero-crossing point,

� 	 0). It is interesting to note that residuals obtained from
the grid-based pair count and FFTmethods almost coincide
with each other and the differences are hard to distinguish,
indicating that both methods are equivalent even in the
practical situation. These experiments suggest that the
grid-based calculation with FFT is a reliable estimation
method comparable to the other methods. It should be
emphasized that the method using FFT is much more
efficient than other pair-count methods. For example, using
8 cores of 3 GHz processors, the direct pair counting with
Npair ¼ 10; 240 k� Nparticle takes about two weeks to get

the results shown in Fig. 15. The grid-based pair-counting
is computationally less expensive than the direct pair
counting, but it still needs time-consuming calculations,
especially for a large number of grids. By contrast, the
method using FFT only requires few minutes even with
Ngrid ¼ 1; 0243. This can be achieved by a single-node

calculation.
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