8 research outputs found

    Loss of interaction between plectin and type XVII collagen results in epidermolysis bullosa simplex

    Get PDF
    Plectin is a linker protein that interacts with intermediate filaments and 4 integrin in hemidesmosomes of the epidermal basement membrane zone (BMZ). Type XVII collagen (COL17) has been suggested as another candidate plectin binding partner in hemidesmosomes. Here, we demonstrate that plectin-COL17 binding helps to maintain epidermal BMZ organization. We identified an epidermolysis bullosa (EB) simplex patient as having markedly diminished expression of plectin and COL17 in skin. The patient is compound heterozygous for sequence variants in the plectin gene (PLEC); one is a truncation and the other is a small in-frame deletion sequence variant. The in-frame deletion is located in the putative COL17-binding domain of plectin and abolishes the plectin-COL17 interaction in vitro. These results imply that disrupted interaction between plectin and COL17 is involved in the development of EB. Our study suggests that protein-protein binding defects may underlie EB in patients with unidentified disease-causing sequence variants

    Neoepitopes on COL17 for LAD autoantibodies

    Get PDF
    Transmembrane collagen XVII (COL17) is a hemidesmosomal component of basal keratinocytes that can be targeted by autoantibodies in autoimmune blistering disorders, including linear IgA dermatosis (LAD). COL17 can be physiologically cleaved within the juxtamembranous extracellular NC16A domain, and LAD autoantibodies preferentially react with the processed ectodomains, indicating that the processing induces neoepitopes. However, the details of how neoepitopes develop have not been elucidated. In this study, we show that C-terminal processing of COL17 also plays a role in inducing neoepitopes for LAD autoantibodies. First, the mAb hC17-ect15 targeting the 15th collagenous domain of COL17 was produced, which showed characteristics similar to LAD autoantibodies. The mAbs preferentially reacted with C-terminally deleted (up to 682 amino acids) recombinant COL17, suggesting that C-terminal processing shows neoepitopes on the 15th collagenous domain. The LAD autoantibodies also react with C-terminal deleted COL17. Therefore, neoepitopes for LAD autoantibodies also develop after C-terminal processing. Finally, the passive transfer of the mAb hC17-ect15 into human COL17-expressing transgenic mice failed to induce blistering disease, suggesting that neoepitope-targeting antibodies are not always pathogenic. In summary, this study shows that C-terminal processing induces dynamic structural changes and neoepitopes for LAD autoantibodies on COL17
    corecore