2,013 research outputs found
Effect of aromatic hydrocarbon addition on in situ powder-in-tube processed MgB2 tapes
We fabricated in situ powder-in-tube processed MgB2/Fe tapes using aromatic
hydrocarbon of benzene, naphthalene, and thiophene as additives, and
investigated the superconducting properties. We found that these aromatic
hydrocarbons were very effective for increasing the Jc values. The Jc values of
20mol% benzene-added tapes reached 130A/mm2 at 4.2K and 10T. This value was
almost comparable to that of 10mol% SiC-added tapes and about four times higher
than that of tapes with no additions. Microstructure analyses suggest that this
Jc enhancement is due to both the substitution of carbon for boron in MgB2 and
the smaller MgB2 grain size.Comment: 6 pages, 4 figure
Kondo Universal Scaling for a Quantum Dot Coupled to Superconducting Leads
We study competition between the Kondo effect and superconductivity in a
single self-assembled InAs quantum dot contacted with Al lateral electrodes.
Due to Kondo enhancement of Andreev reflections the zero-bias anomaly develops
sidepeaks, separated by the superconducting gap energy Delta. For ten valleys
of different Kondo temperature T_K we tune the gap Delta with an external
magnetic field. We find that the zero-bias conductance in each case collapses
onto a single curve with Delta/kT_K as the only relevant energy scale,
providing experimental evidence for universal scaling in this system.Comment: 4 pages, 3 figure
Electrical control of Kondo effect and superconducting transport in a side-gated InAs quantum dot Josephson junction
We measure the non-dissipative supercurrent in a single InAs self-assembled
quantum dot (QD) coupled to superconducting leads. The QD occupation is both
tuned by a back-gate electrode and lateral side-gate. The geometry of the
side-gate allows tuning of the QD-lead tunnel coupling in a region of constant
electron number with appropriate orbital state. Using the side-gate effect we
study the competition between Kondo correlations and superconducting pairing on
the QD, observing a decrease in the supercurrent when the Kondo temperature is
reduced below the superconducting energy gap in qualitative agreement with
theoretical predictions
Varietal differences in the texture of grape berries measured by penetration tests
Penetration tests were made on 8 mm thick flesh sections from grape berries of 22 cultivars of Vitis vinifera L. and 18 of Vitis labruscana Bailey. Deformation at the first major peak (DFP), maximum force (MF), force at the first major peak (FFP) and work to the first major peak (WFP) were recorded. High correlation coefficients were obtained between the rating of difficulty of breakdown on mastication in the sensory tests and DFP (r=0.86**), and the rating of flesh firmness in the sensory test and MF (r=0.84**). The mean value and variance of DFP and WFP were significantly higher in V. labruscana than in V. vinifera, whereas those of MF were nearly the same. DFP and MF were not correlated for V. vinifera cultivars, but were for V. labruscana cultivars (r=0.68**). These results indicate that the texture of V. labruscana had a wide variation in toughness whereas that of V. vinifera was brittle and did not have a wide variation in toughness; both groups had the same variation in firmness
Orbital Configurations and Magnetic Properties of Double-Layered Antiferromagnet CsCuClBr
We report the single-crystal X-ray analysis and magnetic properties of a new
double-layered perovskite antiferromagnet, CsCuClBr. This
structure is composed of CuClBr double layers with elongated
CuClBr octahedra and is closely related to the SrTiO
structure. An as-grown crystal has a singlet ground state with a large
excitation gap of K, due to the strong
antiferromagnetic interaction between the two layers. CsCuClBr
undergoes a structural phase transition at K accompanied
by changes in the orbital configurations of Cu ions. Once a
CsCuClBr crystal is heated above , its magnetic
susceptibility obeys the Curie-Weiss law with decreasing temperature even below
and does not exhibit anomalies at . This implies that in
the heated crystal, the orbital state of the high-temperature phase remains
unchanged below , and thus, this orbital state is the metastable
state. The structural phase transition at is characterized as an
order-disorder transition of Cu orbitals.Comment: 6pages. 6figures, to appear in J. Phys. Soc. Jpn. Vol.76 No.
Blue moon ensemble simulation of aquation free energy profiles applied to mono and bifunctional platinum anticancer drugs
Aquation free energy profiles of neutral cisplatin and cationic
monofunctional derivatives, including triaminochloroplatinum(II) and
cis-diammine(pyridine)chloroplatinum(II), were computed using state of the art
thermodynamic integration, for which temperature and solvent were accounted for
explicitly using density functional theory based canonical molecular dynamics
(DFT-MD). For all the systems the "inverse-hydration" where the metal center
acts as an acceptor of hydrogen bond has been observed. This has motivated to
consider the inversely bonded solvent molecule in the definition of the
reaction coordinate required to initiate the constrained DFT-MD trajectories.
We found that there exists little difference in free enthalpies of activations,
such that these platinum-based anticancer drugs are likely to behave the same
way in aqueous media. Detailed analysis of the microsolvation structure of the
square-planar complexes, along with the key steps of the aquation mechanism are
discussed
Ultrafast demagnetization in the sp-d model: a theoretical study
We propose and analyze a theoretical model of ultrafast light-induced
magnetization dynamics in systems of localized spins that are coupled to
carriers' spins by sp-d exchange interaction. A prominent example of a class of
materials falling into this category are ferromagnetic (III,Mn)V
semiconductors, in which ultrafast demagnetization has been recently observed.
In the proposed model light excitation heats up the population of carriers,
taking it out of equilibrium with the localized spins. This triggers the
process of energy and angular momentum exchange between the two spin systems,
which lasts for the duration of the energy relaxation of the carriers. We
derive the Master equation for the density matrix of a localized spin
interacting with the hot carriers and couple it with a phenomenological
treatment of the carrier dynamics. We develop a general theory within the sp-d
model and we apply it to the ferromagnetic semiconductors, taking into account
the valence band structure of these materials. We show that the fast spin
relaxation of the carriers can sustain the flow of polarization between the
localized and itinerant spins leading to significant demagnetization of the
localized spin system, observed in (III,Mn)V materials.Comment: 15 pages, 8 figure
Mechanism of carrier-induced ferromagnetism in magnetic semiconductors
Taking into account both random impurity distribution and thermal
fluctuations of localized spins, we have performed a model calculation for the
carrier (hole) state in GaMnAs by using the coherent potential
approximation (CPA). The result reveals that a {\it p}-hole in the band tail of
GaMnAs is not like a free carrier but is rather virtually bounded
to impurity sites. The carrier spin strongly couples to the localized {\it d}
spins on Mn ions. The hopping of the carrier among Mn sites causes the
ferromagnetic ordering of the localized spins through the double-exchange
mechanism. The Curie temperature obtained by using conventional parameters
agrees well with the experimental result.Comment: 7 pages, 4 figure
Quantum dots formed in three-dimensional Dirac semimetal CdAs nanowires
We demonstrate quantum dot (QD) formation in three-dimensional Dirac
semimetal CdAs nanowires using two electrostatically tuned pn
junctions with a gate and magnetic fields. The linear conductance measured as a
function of gate voltage under high magnetic fields is strongly suppressed at
the Dirac point close to zero conductance, showing strong conductance
oscillations. Remarkably, in this regime, the CdAs nanowire device
exhibits Coulomb diamond features, indicating that a clean single QD forms in
the Dirac semimetal nanowire. Our results show that a ptype QD can be formed
between two ntype leads underneath metal contacts in the nanowire by
applying gate voltages under strong magnetic fields. Analysis of the quantum
confinement in the gapless band structure confirms that pn junctions formed
between the ptype QD and two neighboring ntype leads under high magnetic
fields behave as resistive tunnel barriers due to cyclotron motion, resulting
in the suppression of Klein tunneling. The ptype QD with magnetic
field-induced confinement shows a single hole filling. Our results will open up
a route to quantum devices such as QDs or quantum point contacts based on Dirac
and Weyl semimetals
- …