6 research outputs found

    Pupil dynamics during very light exercise predict benefits to prefrontal cognition

    Get PDF
    軽運動の前頭前野機能向上効果は瞳に映る. 京都大学プレスリリース. 2023-07-12.Physical exercise, even stress-free very-light-intensity exercise such as yoga and very slow running, can have beneficial effects on executive function, possibly by potentiating prefrontal cortical activity. However, the exact mechanisms underlying this potentiation have not been identified. Evidence from studies using pupillometry demonstrates that pupil changes track the real-time dynamics of activity linked to arousal and attention, including neural circuits from the locus coeruleus to the cortex. This makes it possible to examine whether pupil-linked brain dynamics induced during very-light-intensity exercise mediate benefits to prefrontal executive function in healthy young adults. In this experiment, pupil diameter was measured during 10 min of very-light-intensity exercise (30% V̇o2peak). A Stroop task was used to assess executive function before and after exercise. Prefrontal cortical activation during the task was assessed using multichannel functional near-infrared spectroscopy (fNIRS). We observed that very-light-intensity exercise significantly elicited pupil dilation, reduction of Stroop interference, and task-related left dorsolateral prefrontal cortex activation compared with the resting-control condition. The magnitude of change in pupil dilation predicted the magnitude of improvement in Stroop performance. In addition, causal mediation analysis showed that pupil dilation during very-light-intensity exercise robustly determined subsequent enhancement of Stroop performance. This finding supports our hypothesis that the pupil-linked mechanisms, which may be tied to locus coeruleus activation, are a potential mechanism by which very light exercise enhances prefrontal cortex activation and executive function. It also suggests that pupillometry may be a useful tool to interpret the beneficial impact of exercise on boosting cognition

    Survey of Period Variations of Superhumps in SU UMa-Type Dwarf Novae. VIII: The Eighth Year (2015-2016)

    Full text link
    Continuing the project described by Kato et al. (2009, arXiv:0905.1757), we collected times of superhump maxima for 128 SU UMa-type dwarf novae observed mainly during the 2015-2016 season and characterized these objects. The data have improved the distribution of orbital periods, the relation between the orbital period and the variation of superhumps, the relation between period variations and the rebrightening type in WZ Sge-type objects. Coupled with new measurements of mass ratios using growing stages of superhumps, we now have a clearer and statistically greatly improved evolutionary path near the terminal stage of evolution of cataclysmic variables. Three objects (V452 Cas, KK Tel, ASASSN-15cl) appear to have slowly growing superhumps, which is proposed to reflect the slow growth of the 3:1 resonance near the stability border. ASASSN-15sl, ASASSN-15ux, SDSS J074859.55+312512.6 and CRTS J200331.3-284941 are newly identified eclipsing SU UMa-type (or WZ Sge-type) dwarf novae. ASASSN-15cy has a short (~0.050 d) superhump period and appears to belong to EI Psc-type objects with compact secondaries having an evolved core. ASASSN-15gn, ASASSN-15hn, ASASSN-15kh and ASASSN-16bu are candidate period bouncers with superhump periods longer than 0.06 d. We have newly obtained superhump periods for 79 objects and 13 orbital periods, including periods from early superhumps. In order that the future observations will be more astrophysically beneficial and rewarding to observers, we propose guidelines how to organize observations of various superoutbursts.Comment: 123 pages, 162 figures, 119 tables, accepted for publication in PASJ (including supplementary information

    CD133 Negatively Regulates Tumorigenicity via AKT Pathway in Synovial Sarcoma

    Get PDF
    Synovial sarcoma is an aggressive tumor which accounts for almost 10% of all soft tissue sarcomas. In this study, we found the expression of CD133 in human synovial sarcoma specimens, thus we focused on the function of CD133 in synovial sarcoma. Separation of the CD133-positive and -negative subpopulations in synovial sarcoma cell lines clarified that the CD133-negative subpopulation exhibited enhanced growth and hyperphosphorylation of AKT. Treatment of Akt inhibitor suppressed the cell growth of CD133-negative subpopulation to the levels of CD133-positive cells. These results suggest that CD133 has negative effect on the growth of cells through AKT-dependent signalling pathway
    corecore