1,115 research outputs found

    Subpixel Spatial Resolution of the X-Ray Charge-Coupled Device Based on the Charge Cloud Shape

    Get PDF
    When an X-ray photon lands into a pixel (event pixel), the primary charge is mainly collected into the event pixel. If the X-ray landing position is sufficiently close to the pixel boundary, the primary charge spills over to the adjacent pixel forming split events. We can easily understand that there are three parameters coupled together; the X-ray landing position inside the pixel, the X-ray event pattern and the primary charge cloud shape. We can determine any one of them from the other two parameters. Since we know the charge cloud shape using the multi-pitch mesh experiment, we can calculate the X-ray landing position with subpixel resolution using the event pattern. We applied our method to Ti-K X-rays for the charge-coupled device with 12μ12 \mum square pixel. Once the primary charge splits into the adjacent pixel, we can determine the X-ray landing position with subpixel resolution. Using three- or four-pixel split events, we can determine the X-ray landing position with an accuracy of less than 1μ1 \mum. For a two-pixel split event, we obtained a similar position accuracy in the split direction with no improvement in the direction perpendicular to it. We will discuss the type of CCD which can achieve the subpixel resolution for the entire area of the CCD.Comment: 16pages, 5 figures. To appear in Jpn. J. Appl. Phys. March, 200

    Direct measurement of sub-pixel structure of the EPIC MOS CCD on-board th e XMM/NEWTON satellite

    Full text link
    We have used a mesh experiment in order to measure the sub-pixel structure of the EPIC MOS CCDs on-board the XMM/NEWTON satellite. The EPIC MOS CCDs have 40 μ\mum-square pixels which have an open electrode structure in order to improve the detection efficiency for low-energy X-rays. We obtained restored pixel images for various X-ray event grades (e.g. split-pixel events, single pixel events, etc.) at various X-ray energies. We confirmed that the open electrode structure results in a distorted horizontal pixel boundary. The open electrode region generates both single pixel events and vertically split events, but no horizontally split events. Because the single pixel events usually show the best energy resolution, we discuss a method of increasing the fraction of single pixel events from the open electrode region. Furthermore, we have directly measured the thickness of the electrodes and dead-layers by comparing spectra from the open electrode region with those from the other regions: electrodes, electrode finger and channel stop. We can say that EPIC MOS CCDs are more radiation hard than front-illumination chips of ACIS on-board Chandra X-ray Observatory because of their extra absorption thickness above the charge transfer channel. We calcurated the mean pixel response and found that our estimation has a good agreement with that of the ground calibration of EPIC MOS CCD.Comment: 20pages including 2 tables, 10 figures,Accepted for publication in : Nuclear Instruments and Methods in Physics Research

    Discovery of Strong Radiative Recombination Continua from The Supernova Remnant IC 443 with Suzaku

    Full text link
    We present the Suzaku spectroscopic study of the Galactic middle-aged supernova remnant (SNR) IC 443. The X-ray spectrum in the 1.75-6.0 keV band is described by an optically-thin thermal plasma with the electron temperature of 0.6 keV and several additional Lyman lines. We robustly detect, for the first time, strong radiative recombination continua (RRC) of H-like Si and S around at 2.7 and 3.5 keV. The ionization temperatures of Si and S determined from the intensity ratios of the RRC to He-like K-alpha line are 1.0 keV and 1.2 keV, respectively. We thus find firm evidence for an extremely-overionized (recombining) plasma. As the origin of the overionization, a thermal conduction scenario argued in previous work is not favored in our new results. We propose that the highly-ionized gas were made at the initial phase of the SNR evolution in dense regions around a massive progenitor, and the low electron temperature is due to a rapid cooling by an adiabatic expansion.Comment: 5 pages, 5 figures, accepted by ApJ Lette

    Nonthermal X-radiation of SNR RX J1713.7-3946: The Relations to a Nearby Molecular Cloud

    Full text link
    The recent X-ray and CO observations of RX J1713.7-3946 show that a significant fraction of the nonthermal X-ray emission of this unique supernova remnant associates, in one way or another, with a molecular cloud interacting with the west part of the shell. This adds a new puzzle in the origin of X-ray emission which cannot be easily explained within the standard model in accordance of which X-rays are result of synchrotron radiation of multi-TeV electrons accelerated by supernova shock waves. We explore an alternative origin of the X-ray emission assuming that it is produced by secondary electrons resulting from high energy hadronic interactions in the molecular gas. Such a scenario could explain in a quite natural way the apparent correlation between the X-ray and CO morphologies. However, the TeV gamma-ray emission recently reported by H.E.S.S. significantly constrains the parameter space of this model. Namely, this mechanism cannot reproduce the bulk of the observed X-ray flux unless one postulates existence of a PeV cosmic-ray component penetrating with an unusually hard spectrum into the dense cloud.Comment: 6 pages, 3 figures, to appear in Proc. of Int. Symp. on High Energy Gamma-ray Astronomy, Heidelberg (July 2004

    High-Energy Neutrino Astronomy

    Full text link
    Kilometer-scale neutrino detectors such as IceCube are discovery instruments covering nuclear and particle physics, cosmology and astronomy. Examples of their multidisciplinary missions include the search for the particle nature of dark matter and for additional small dimensions of space. In the end, their conceptual design is very much anchored to the observational fact that Nature accelerates protons and photons to energies in excess of 102010^{20} and 101310^{13} eV, respectively. The cosmic ray connection sets the scale of cosmic neutrino fluxes. In this context, we discuss the first results of the completed AMANDA detector and the reach of its extension, IceCube. Similar experiments are under construction in the Mediterranean. Neutrino astronomy is also expanding in new directions with efforts to detect air showers, acoustic and radio signals initiated by super-EeV neutrinos.Comment: 9 pages, Latex2e, uses ws-procs975x65standard.sty (included), 4 postscript figures. To appear in Proceedings of Thinking, Observing, and Mining the Universe, Sorrento, Italy, September 200

    Asymptotics and local constancy of characters of p-adic groups

    Full text link
    In this paper we study quantitative aspects of trace characters Θπ\Theta_\pi of reductive pp-adic groups when the representation π\pi varies. Our approach is based on the local constancy of characters and we survey some other related results. We formulate a conjecture on the behavior of Θπ\Theta_\pi relative to the formal degree of π\pi, which we are able to prove in the case where π\pi is a tame supercuspidal. The proof builds on J.-K.~Yu's construction and the structure of Moy-Prasad subgroups.Comment: Proceedings of Simons symposium on the trace formul
    corecore