4 research outputs found

    MAPK-pathway inhibition mediates inflammatory reprogramming and sensitizes tumors to targeted activation of innate immunity sensor RIG-I

    Get PDF
    Kinase inhibitors suppress the growth of oncogene driven cancer but also enforce the selection of treatment resistant cells that are thought to promote tumor relapse in patients. Here, we report transcriptomic and functional genomics analyses of cells and tumors within their microenvironment across different genotypes that persist during kinase inhibitor treatment. We uncover a conserved, MAPK/IRF1-mediated inflammatory response in tumors that undergo stemness- and senescence-associated reprogramming. In these tumor cells, activation of the innate immunity sensor RIG-I via its agonist IVT4, triggers an interferon and a pro-apoptotic response that synergize with concomitant kinase inhibition. In humanized lung cancer xenografts and a syngeneic Egfr-driven lung cancer model these effects translate into reduction of exhausted CD8(+) T cells and robust tumor shrinkage. Overall, the mechanistic understanding of MAPK/IRF1-mediated intratumoral reprogramming may ultimately prolong the efficacy of targeted drugs in genetically defined cancer patients

    MAPK-pathway inhibition mediates inflammatory reprogramming and sensitizes tumors to targeted activation of innate immunity sensor RIG-I.

    Get PDF
    Kinase inhibitors suppress the growth of oncogene driven cancer but also enforce the selection of treatment resistant cells that are thought to promote tumor relapse in patients. Here, we report transcriptomic and functional genomics analyses of cells and tumors within their microenvironment across different genotypes that persist during kinase inhibitor treatment. We uncover a conserved, MAPK/IRF1-mediated inflammatory response in tumors that undergo stemness- and senescence-associated reprogramming. In these tumor cells, activation of the innate immunity sensor RIG-I via its agonist IVT4, triggers an interferon and a pro-apoptotic response that synergize with concomitant kinase inhibition. In humanized lung cancer xenografts and a syngeneic Egfr-driven lung cancer model these effects translate into reduction of exhausted CD8+ T cells and robust tumor shrinkage. Overall, the mechanistic understanding of MAPK/IRF1-mediated intratumoral reprogramming may ultimately prolong the efficacy of targeted drugs in genetically defined cancer patients

    Carboplatin/gefitinib/paclitaxel

    No full text

    Discovery of compounds inhibiting the ADP-ribosyltransferase activity of pertussis toxin

    No full text
    Abstract The targeted pathogen-selective approach to drug development holds promise to minimize collateral damage to the beneficial microbiome. The AB₅-topology pertussis toxin (PtxS1-S5) is a major virulence factor of Bordetella pertussis, the causative agent of the highly contagious respiratory disease whooping cough. Once internalized into the host cell, PtxS1 ADP-ribosylates α-subunits of the heterotrimeric Gαi-superfamily, thereby disrupting G-protein-coupled receptor signaling. Here, we report the discovery of the first small molecules inhibiting the ADP-ribosyltransferase activity of pertussis toxin. We developed protocols to purify milligram-levels of active recombinant B. pertussis PtxS1 from Escherichia coli and an in vitro high throughput-compatible assay to quantify NADâș consumption during PtxS1-catalyzed ADP-ribosylation of Gαi. Two inhibitory compounds (NSC228155 and NSC29193) with low micromolar IC₅₀-values (3.0 ÎŒM and 6.8 ÎŒM) were identified in the in vitro NADâș consumption assay that also were potent in an independent in vitro assay monitoring conjugation of ADP-ribose to Gαi. Docking and molecular dynamics simulations identified plausible binding poses of NSC228155 and in particular of NSC29193, most likely owing to the rigidity of the latter ligand, at the NADâș-binding pocket of PtxS1. NSC228155 inhibited the pertussis AB₅ holotoxin-catalyzed ADP-ribosylation of Gαi in living human cells with a low micromolar IC₅₀-value (2.4 ÎŒM). NSC228155 and NSC29193 might prove to be useful hit compounds in targeted B. pertussis-selective drug development
    corecore