19 research outputs found

    Targeted over-expression of glutamate transporter 1 (GLT-1) reduces ischemic brain injury in a rat model of stroke

    Get PDF
    Following the onset of an ischemic brain injury, the excitatory neurotransmitter glutamate is released. The excitotoxic effects of glutamate are a major contributor to the pathogenesis of a stroke. The aim of this study was to examine if overexpression of a glutamate transporter (GLT-1) reduces ischemic brain injury in a rat model of stroke. We generated an adeno-associated viral (AAV) vector expressing the rat GLT-1 cDNA (AAV-GLT1). Functional expression of AAV-GLT1 was confirmed by increased glutamate clearance rate in non-stroke rat brain as measured by in vivo amperometry. AAV-GLT1 was injected into future cortical region of infarction 3 weeks prior to 60 min middle cerebral artery occlusion (MCAo). Tissue damage was assessed at one and two days after MCAo using TUNEL and TTC staining, respectively. Behavioral testing was performed at 2, 8 and 14 days post-stroke. Animals receiving AAV-GLT1, compared to AAV-GFP, showed significant decreases in the duration and magnitude of extracellular glutamate, measured by microdialysis, during the 60 minute MCAo. A significant reduction in brain infarction and DNA fragmentation was observed in the region of AAV-GLT1 injection. Animals that received AAV-GLT1 showed significant improvement in behavioral recovery following stroke compared to the AAV-GFP group. We demonstrate that focal overexpression of the glutamate transporter, GLT-1, significantly reduces ischemia-induced glutamate overflow, decreases cell death and improves behavioral recovery. These data further support the role of glutamate in the pathogenesis of ischemic damage in brain and demonstrate that targeted gene delivery to decrease the ischemia-induced glutamate overflow reduces the cellular and behavioral deficits caused by stroke

    Terminal spreading depolarization and electrical silence in death of human cerebral cortex

    Get PDF
    Objective: Restoring the circulation is the primary goal in emergency treatment of cerebral ischemia. However, better understanding of how the brain responds to energy depletion could help predict the time available for resuscitation until irreversible damage and advance development of interventions that prolong this span. Experimentally, injury to central neurons begins only with anoxic depolarization. This potentially reversible, spreading wave typically starts 2 to 5 minutes after the onset of severe ischemia, marking the onset of a toxic intraneuronal change that eventually results in irreversible injury. Methods: To investigate this in the human brain, we performed recordings with either subdural electrode strips (n = 4) or intraparenchymal electrode arrays (n = 5) in patients with devastating brain injury that resulted in activation of a Do Not Resuscitate–Comfort Care order followed by terminal extubation. Results: Withdrawal of life‐sustaining therapies produced a decline in brain tissue partial pressure of oxygen (ptiO2) and circulatory arrest. Silencing of spontaneous electrical activity developed simultaneously across regional electrode arrays in 8 patients. This silencing, termed “nonspreading depression,” developed during the steep falling phase of ptiO2 (intraparenchymal sensor, n = 6) at 11 (interquartile range [IQR] = 7–14) mmHg. Terminal spreading depolarizations started to propagate between electrodes 3.9 (IQR = 2.6–6.3) minutes after onset of the final drop in perfusion and 13 to 266 seconds after nonspreading depression. In 1 patient, terminal spreading depolarization induced the initial electrocerebral silence in a spreading depression pattern; circulatory arrest developed thereafter. Interpretation: These results provide fundamental insight into the neurobiology of dying and have important implications for survivable cerebral ischemic insults. Ann Neurol 2018;83:295–31

    NS1′ of Flaviviruses in the Japanese Encephalitis Virus Serogroup Is a Product of Ribosomal Frameshifting and Plays a Role in Viral Neuroinvasiveness▿

    No full text
    Flavivirus NS1 is a nonstructural protein involved in virus replication and regulation of the innate immune response. Interestingly, a larger NS1-related protein, NS1′, is often detected during infection with the members of the Japanese encephalitis virus serogroup of flaviviruses. However, how NS1′ is made and what role it performs in the viral life cycle have not been determined. Here we provide experimental evidence that NS1′ is the product of a −1 ribosomal frameshift event that occurs at a conserved slippery heptanucleotide motif located near the beginning of the NS2A gene and is stimulated by a downstream RNA pseudoknot structure. Using site-directed mutagenesis of these sequence elements in an infectious clone of the Kunjin subtype of West Nile virus, we demonstrate that NS1′ plays a role in viral neuroinvasiveness

    Diffuse Brain Injury Elevates Tonic Glutamate Levels and Potassium-Evoked Glutamate Release in Discrete Brain Regions at Two Days Post-Injury: An Enzyme-Based Microelectrode Array Study

    No full text
    Traumatic brain injury (TBI) survivors often suffer from a wide range of post-traumatic deficits, including impairments in behavioral, cognitive, and motor function. Regulation of glutamate signaling is vital for proper neuronal excitation in the central nervous system. Without proper regulation, increases in extracellular glutamate can contribute to the pathophysiology and neurological dysfunction seen in TBI. In the present studies, enzyme-based microelectrode arrays (MEAs) that selectively measure extracellular glutamate at 2 Hz enabled the examination of tonic glutamate levels and potassium chloride (KCl)-evoked glutamate release in the prefrontal cortex, dentate gyrus, and striatum of adult male rats 2 days after mild or moderate midline fluid percussion brain injury. Moderate brain injury significantly increased tonic extracellular glutamate levels by 256% in the dentate gyrus and 178% in the dorsal striatum. In the dorsal striatum, mild brain injury significantly increased tonic glutamate levels by 200%. Tonic glutamate levels were significantly correlated with injury severity in the dentate gyrus and striatum. The amplitudes of KCl-evoked glutamate release were increased significantly only in the striatum after moderate injury, with a 249% increase seen in the dorsal striatum. Thus, with the MEAs, we measured discrete regional changes in both tonic and KCl-evoked glutamate signaling, which were dependent on injury severity. Future studies may reveal the specific mechanisms responsible for glutamate dysregulation in the post-traumatic period, and may provide novel therapeutic means to improve outcomes after TBI
    corecore