2,499 research outputs found

    From non-symmetric particle systems to non-linear PDEs on fractals

    Full text link
    We present new results and challenges in obtaining hydrodynamic limits for non-symmetric (weakly asymmetric) particle systems (exclusion processes on pre-fractal graphs) converging to a non-linear heat equation. We discuss a joint density-current law of large numbers and a corresponding large deviations principle.Comment: v2: 10 pages, 1 figure. To appear in the proceedings for the 2016 conference "Stochastic Partial Differential Equations & Related Fields" in honor of Michael R\"ockner's 60th birthday, Bielefel

    A disrupted circumstellar torus inside eta Carinae's Homunculus Nebula

    Get PDF
    We present thermal infrared images of the bipolar nebula surrounding eta Carinae at six wavelengths from 4.8 to 24.5 microns. These were obtained with the MIRAC3 camera system at the Magellan Observatory. Our images reveal new intricate structure in the bright core of the nebula, allowing us to re-evaluate interpretations of morphology seen in images with lower resolution. Complex structures in the core might not arise from a pair of overlapping rings or a cool (110 K) and very massive dust torus, as has been suggested recently. Instead, it seems more likely that the arcs and compact knots comprise a warm (350 K) disrupted torus at the intersection of the larger polar lobes. Some of the arcs appear to break out of the inner core region, and may be associated with equatorial features seen in optical images. The torus could have been disrupted by a post-eruption stellar wind, or by ejecta from the Great Eruption itself if the torus existed before that event. Kinematic data are required to rule out either possibility.Comment: 8 pages, 3 figures (Fig. 1 in color); to appear in ApJ Letter

    Inspecting spectra with sound: proof-of-concept & extension to datacubes

    Full text link
    We present a novel approach to inspecting galaxy spectra using sound, via their direct audio representation ('spectral audification'). We discuss the potential of this as a complement to (or stand-in for) visual approaches. We surveyed 58 respondents who use the audio representation alone to rate 30 optical galaxy spectra with strong emission lines. Across three tests, each focusing on different quantities measured from the spectra (signal-to-noise ratio, emission-line width, & flux ratios), we find that user ratings are well correlated with measured quantities. This demonstrates that physical information can be independently gleaned from listening to spectral audifications. We note the importance of context when rating these sonifications, where the order examples are heard can influence responses. Finally, we adapt the method used in this promising pilot study to spectral datacubes. We suggest that audification allows efficient exploration of complex, spatially-resolved spectral data.Comment: 6 pages, 3 figures, accepted for publication in RASTI. Supplementary data (including animated figure) available at https://doi.org/10.25405/data.ncl.2281644

    Absolute physical calibration in the infrared

    Get PDF
    We determine an absolute calibration for the Multiband Imaging Photometer for Spitzer 24 μm band and recommend adjustments to the published calibrations for Two Micron All Sky Survey (2MASS), Infrared Array Camera (IRAC), and IRAS photometry to put them on the same scale. We show that consistent results are obtained by basing the calibration on either an average A0V star spectral energy distribution (SED), or by using the absolutely calibrated SED of the Sun in comparison with solar-type stellar photometry (the solar analog method). After the rejection of a small number of stars with anomalous SEDs (or bad measurements), upper limits of ~1.5% root mean square (rms) are placed on the intrinsic infrared (IR) SED variations in both A-dwarf and solar-type stars. These types of stars are therefore suitable as general-purpose standard stars in the IR. We provide absolutely calibrated SEDs for a standard zero magnitude A star and for the Sun to allow extending this work to any other IR photometric system. They allow the recommended calibration to be applied from 1 to 25 μm with an accuracy of ~2%, and with even higher accuracy at specific wavelengths such as 2.2, 10.6, and 24 μm, near which there are direct measurements. However, we confirm earlier indications that Vega does not behave as a typical A0V star between the visible and the IR, making it problematic as the defining star for photometric systems. The integration of measurements of the Sun with those of solar-type stars also provides an accurate estimate of the solar SED from 1 through 30 μm, which we show agrees with theoretical models

    Dissecting the origin of the submillimeter emission in nearby galaxies with Herschel and LABOCA

    Get PDF
    We model the infrared to submillimeter spectral energy distribution of 11 nearby galaxies of the KINGFISH sample using Spitzer and Herschel data and compare model extrapolations at 870um (using different fitting techniques) with LABOCA 870um observations. We investigate how the differences between predictions and observations vary with model assumptions or environment. At global scales, we find that modified blackbody models using realistic cold emissivity indices (beta_c=2 or 1.5) are able to reproduce the 870um observed emission within the uncertainties for most of the sample. Low values (beta_c<1.3) would be required in NGC0337, NGC1512 and NGC7793. At local scales, we observe a systematic 870um excess when using beta_=2.0. The beta_c=1.5 or the Draine and Li (2007) models can reconcile predictions with observations in part of the disks. Some of the remaining excesses occur towards the centres and can be partly or fully accounted for by non-dust contributions such as CO(3-2) or, to a lesser extent, free-free or synchrotron emission. In three non-barred galaxies, the remaining excesses rather occur in the disk outskirts. This could be a sign of a flattening of the submm slope (and decrease of the effective emissivity index) with radius in these objects.Comment: 31 pages (including appendix), 7 figures, accepted for publication in MNRA

    The Structure of the {\beta} Leonis Debris Disk

    Get PDF
    We combine nulling interferometry at 10 {\mu}m using the MMT and Keck Telescopes with spectroscopy, imaging, and photometry from 3 to 100 {\mu}m using Spitzer to study the debris disk around {\beta} Leo over a broad range of spatial scales, corresponding to radii of 0.1 to ~100 AU. We have also measured the close binary star o Leo with both Keck and MMT interferometers to verify our procedures with these instruments. The {\beta} Leo debris system has a complex structure: 1.) relatively little material within 1 AU; 2.) an inner component with a color temperature of ~600 K, fitted by a dusty ring from about 2 to 3 AU; and 3.) a second component with a color temperature of ~120 K fitted by a broad dusty emission zone extending from about ~5 AU to ~55 AU. Unlike many other A-type stars with debris disks, {\beta} Leo lacks a dominant outer belt near 100 AU.Comment: 14 page body, 3 page appendix, 15 figure
    corecore