4,928 research outputs found

    HESS J1825-137: A pulsar wind nebula associated with PSR B1823-13?

    Full text link
    HESS J1825-137 was detected with a significance of 8.1 σ\sigma in the Galactic Plane survey conducted with the H.E.S.S. instrument in 2004. Both HESS J1825-137 and the X-ray pulsar wind nebula G18.0--0.7 (associated with the Vela-like pulsar PSR B1823-13) are offset south of the pulsar, which may be the result of the SNR expanding into an inhomogeneous medium. The TeV size (35\sim 35 pc, for a distance of 4 kpc) is 6\sim 6 times larger than the X-ray size, which may be the result of propagation effects as a result of the longer lifetime of TeV emitting electrons, compared to the relatively short lifetime of keV synchrotron emitting electrons. The TeV photon spectral index of 2.4\sim 2.4 can also be related to the extended PWN X-ray synchrotron photon index of 2.3\sim 2.3, if this spectrum is dominated by synchrotron cooling. The anomalously large size of the pulsar wind nebula can be explained if the pulsar was born with a relatively large initial spindown power and braking index n2n\sim 2, provided that the SNR expanded into the hot ISM with relatively low density (0.003\sim 0.003 cm3^{-3}).Comment: 4 pages, 4 figures, to appear in the Proc. of the 29th International Cosmic Ray Conference, OG Sessio

    Global adaptation in networks of selfish components: emergent associative memory at the system scale

    No full text
    In some circumstances complex adaptive systems composed of numerous self-interested agents can self-organise into structures that enhance global adaptation, efficiency or function. However, the general conditions for such an outcome are poorly understood and present a fundamental open question for domains as varied as ecology, sociology, economics, organismic biology and technological infrastructure design. In contrast, sufficient conditions for artificial neural networks to form structures that perform collective computational processes such as associative memory/recall, classification, generalisation and optimisation, are well-understood. Such global functions within a single agent or organism are not wholly surprising since the mechanisms (e.g. Hebbian learning) that create these neural organisations may be selected for this purpose, but agents in a multi-agent system have no obvious reason to adhere to such a structuring protocol or produce such global behaviours when acting from individual self-interest. However, Hebbian learning is actually a very simple and fully-distributed habituation or positive feedback principle. Here we show that when self-interested agents can modify how they are affected by other agents (e.g. when they can influence which other agents they interact with) then, in adapting these inter-agent relationships to maximise their own utility, they will necessarily alter them in a manner homologous with Hebbian learning. Multi-agent systems with adaptable relationships will thereby exhibit the same system-level behaviours as neural networks under Hebbian learning. For example, improved global efficiency in multi-agent systems can be explained by the inherent ability of associative memory to generalise by idealising stored patterns and/or creating new combinations of sub-patterns. Thus distributed multi-agent systems can spontaneously exhibit adaptive global behaviours in the same sense, and by the same mechanism, as the organisational principles familiar in connectionist models of organismic learning

    Recurrent Fully Convolutional Neural Networks for Multi-slice MRI Cardiac Segmentation

    Full text link
    In cardiac magnetic resonance imaging, fully-automatic segmentation of the heart enables precise structural and functional measurements to be taken, e.g. from short-axis MR images of the left-ventricle. In this work we propose a recurrent fully-convolutional network (RFCN) that learns image representations from the full stack of 2D slices and has the ability to leverage inter-slice spatial dependences through internal memory units. RFCN combines anatomical detection and segmentation into a single architecture that is trained end-to-end thus significantly reducing computational time, simplifying the segmentation pipeline, and potentially enabling real-time applications. We report on an investigation of RFCN using two datasets, including the publicly available MICCAI 2009 Challenge dataset. Comparisons have been carried out between fully convolutional networks and deep restricted Boltzmann machines, including a recurrent version that leverages inter-slice spatial correlation. Our studies suggest that RFCN produces state-of-the-art results and can substantially improve the delineation of contours near the apex of the heart.Comment: MICCAI Workshop RAMBO 201

    Bio-linguistic transition and Baldwin effect in an evolutionary naming-game model

    Full text link
    We examine an evolutionary naming-game model where communicating agents are equipped with an evolutionarily selected learning ability. Such a coupling of biological and linguistic ingredients results in an abrupt transition: upon a small change of a model control parameter a poorly communicating group of linguistically unskilled agents transforms into almost perfectly communicating group with large learning abilities. When learning ability is kept fixed, the transition appears to be continuous. Genetic imprinting of the learning abilities proceeds via Baldwin effect: initially unskilled communicating agents learn a language and that creates a niche in which there is an evolutionary pressure for the increase of learning ability.Our model suggests that when linguistic (or cultural) processes became intensive enough, a transition took place where both linguistic performance and biological endowment of our species experienced an abrupt change that perhaps triggered the rapid expansion of human civilization.Comment: 7 pages, minor changes, accepted in Int.J.Mod.Phys.C, proceedings of Max Born Symp. Wroclaw (Poland), Sept. 2007. Java applet is available at http://spin.amu.edu.pl/~lipowski/biolin.html or http://www.amu.edu.pl/~lipowski/biolin.htm

    Response of finite-time particle detectors in non-inertial frames and curved spacetime

    Get PDF
    The response of the Unruh-DeWitt type monopole detectors which were coupled to the quantum field only for a finite proper time interval is studied for inertial and accelerated trajectories, in the Minkowski vacuum in (3+1) dimensions. Such a detector will respond even while on an inertial trajctory due to the transient effects. Further the response will also depend on the manner in which the detector is switched on and off. We consider the response in the case of smooth as well as abrupt switching of the detector. The former case is achieved with the aid of smooth window functions whose width, TT, determines the effective time scale for which the detector is coupled to the field. We obtain a general formula for the response of the detector when a window function is specified, and work out the response in detail for the case of gaussian and exponential window functions. A detailed discussion of both T0T \rightarrow 0 and TT \rightarrow \infty limits are given and several subtlities in the limiting procedure are clarified. The analysis is extended for detector responses in Schwarzschild and de-Sitter spacetimes in (1+1) dimensions.Comment: 29 pages, normal TeX, figures appended as postscript file, IUCAA Preprint # 23/9

    Deep Over-sampling Framework for Classifying Imbalanced Data

    Full text link
    Class imbalance is a challenging issue in practical classification problems for deep learning models as well as traditional models. Traditionally successful countermeasures such as synthetic over-sampling have had limited success with complex, structured data handled by deep learning models. In this paper, we propose Deep Over-sampling (DOS), a framework for extending the synthetic over-sampling method to exploit the deep feature space acquired by a convolutional neural network (CNN). Its key feature is an explicit, supervised representation learning, for which the training data presents each raw input sample with a synthetic embedding target in the deep feature space, which is sampled from the linear subspace of in-class neighbors. We implement an iterative process of training the CNN and updating the targets, which induces smaller in-class variance among the embeddings, to increase the discriminative power of the deep representation. We present an empirical study using public benchmarks, which shows that the DOS framework not only counteracts class imbalance better than the existing method, but also improves the performance of the CNN in the standard, balanced settings

    Cavity method for quantum spin glasses on the Bethe lattice

    Full text link
    We propose a generalization of the cavity method to quantum spin glasses on fixed connectivity lattices. Our work is motivated by the recent refinements of the classical technique and its potential application to quantum computational problems. We numerically solve for the phase structure of a connectivity q=3q=3 transverse field Ising model on a Bethe lattice with ±J\pm J couplings, and investigate the distribution of various classical and quantum observables.Comment: 27 pages, 9 figure

    Dark matter annihilation and decay in dwarf spheroidal galaxies: The classical and ultrafaint dSphs

    Full text link
    Dwarf spheroidal (dSph) galaxies are prime targets for present and future gamma-ray telescopes hunting for indirect signals of particle dark matter. The interpretation of the data requires careful assessment of their dark matter content in order to derive robust constraints on candidate relic particles. Here, we use an optimised spherical Jeans analysis to reconstruct the `astrophysical factor' for both annihilating and decaying dark matter in 21 known dSphs. Improvements with respect to previous works are: (i) the use of more flexible luminosity and anisotropy profiles to minimise biases, (ii) the use of weak priors tailored on extensive sets of contamination-free mock data to improve the confidence intervals, (iii) systematic cross-checks of binned and unbinned analyses on mock and real data, and (iv) the use of mock data including stellar contamination to test the impact on reconstructed signals. Our analysis provides updated values for the dark matter content of 8 `classical' and 13 `ultrafaint' dSphs, with the quoted uncertainties directly linked to the sample size; the more flexible parametrisation we use results in changes compared to previous calculations. This translates into our ranking of potentially-brightest and most robust targets---viz., Ursa Minor, Draco, Sculptor---, and of the more promising, but uncertain targets---viz., Ursa Major 2, Coma---for annihilating dark matter. Our analysis of Segue 1 is extremely sensitive to whether we include or exclude a few marginal member stars, making this target one of the most uncertain. Our analysis illustrates challenges that will need to be addressed when inferring the dark matter content of new `ultrafaint' satellites that are beginning to be discovered in southern sky surveys.Comment: 19 pages, 14 figures, submitted to MNRAS. Supplementary material available on reques
    corecore