9 research outputs found

    A geological 3D-model of Austria

    Get PDF
    GeoSphere Austria (formerly Geologische Bundesanstalt - Geological Survey of Austria) has produced a supra-regional 3D framework model called “3D AUSTRIA” providing a large-scale geological overview for professional geologists, students and the public. This model is intended to act as support for subsequent regional modelling projects as well as for educational and communicational purpose. The modelled domain of covers a rectangular area of 175 000 km² including the national borders of Austria, down to a depth to 60 km below sea level. Model units are defined following the nomenclature of Schmid et al. (2004) and Froitzheim et al. (2008), each unit having a specific paleo-geographic origin and tectono-metamorphic history. Seven modelling units are considered: two continental plates (1) the Adriatic Plate, (2) the Eurasian Plate, four units from the Alpine orogenic wedge (3) the South-Alpine Superunit, (4) the Austroalpine Superunit, (5) the Penninic Superunit, (6) the Sub-Penninic Superunit and (7) Neogene sedimentary basins in the foreland and within the Alps. Due to the large-scale character of the model, relatively small constituents of the Alpine Orogen are merged together (Meliata Superunit and Inner Western Carpathian Superunit with the Austroalpine Superunit, Helvetic Superunit and Allochtone Molasse with the Sup-Penninic Superunit, intrusive rocks along the Periadriatic Fault with their host unit, minor Neogene basins with the Austroalpine Superunit). The model geometry is constrained by the geological map of Austria 1:1.5M (Schuster et al., 2019), (2) 24 published cross sections and (3) published contour maps for the Moho discontinuity (Ziegler & Dèzes, 2006) and the large Neogene basins. It has been generated with the SKUA-GOCAD software suite following the workflow of Pfleiderer et al. (2016). The framework model 3D AUSTRIA can be visualized with the web 3D Viewer of Geosphere Austria (https://gis.geosphere.at/portal/home/webscene/viewer.html?webscene=c11cd25795294ba8b6f276ab2d072afb) or downloaded from the Tethys Research Data Repository (https://doi.tethys.at/10.24341/tethys.184) allowing the generation of a physical multi-part model using 3D printing technology. It provides a unique way to comprehend the fundamentally 3D nature of sedimentary and tectonic features, like the unconformity at the base of Neogene sedimentary basins, the Alpine frontal thrust or the Tauern Window. The data acquired in the framework of the AlpArray project can be used in future for refining the geometry of 3D AUSTRIA

    Extension und deren Bedeutung während der Entstehung des Himalajas im NW Indiens

    No full text
    The evolution of most orogens typically records cogenetic shortening and extension. Pervasive normal faulting in an orogen, however, has been related to late syn- and post-collisional stages of mountain building with shortening focused along the peripheral sectors of the orogen. While extensional processes constitute an integral part of orogenic evolution, the spatiotemporal characteristics and the kinematic linkage of structures related to shortening and extension in the core regions of the orogen are often not well known. Related to the India-Eurasia collision, the Himalaya forms the southern margin of the Tibetan Plateau and constitutes the most prominent Cenozoic type example of a collisional orogen. While thrusting is presently observed along the foothills of the orogen, several generations of extensional structures have been detected in the internal, high-elevation regions, both oriented either parallel or perpendicular to the strike of the orogen. In the NW Indian Himalaya, earthquake focal mechanisms, seismites and ubiquitous normal faulting in Quaternary deposits, and regional GPS measurements reveal ongoing E-W extension. In contrast to other extensional structures observed in the Himalaya, this extension direction is neither parallel nor perpendicular to the NE-SW regional shortening direction. In this study, I took advantage of this obliquity between the trend of the orogen and structures related to E-W oriented extension in order to address the question of the driving forces of different extension directions. Thus, extension might be triggered triggered by processes within the Tibetan Plateau or originates from the curvature of the Himalayan orogen. In order to elaborate on this topic, I present new fault-kinematic data based on systematic measurements of approximately 2000 outcrop-scale brittle fault planes with displacements of up to several centimeters that cover a large area of the NW Indian Himalaya. This new data set together with field observations relevant for relative chronology allows me to distinguish six different deformation styles. One of the main results are that the overall strain pattern derived from this data reflects the regionally important contractional deformation pattern very well, but also reveals significant extensional deformation. In total, I was able to identify six deformation styles, most of which are temporally and spatially linked and represent protracted shortening, but also significant extensional directions. For example, this is the first data set where a succession of both, arc-normal and E-W extension have been documented in the Himalaya. My observations also furnish the basis for a detailed overview of the younger extensional deformation history in the NW Indian Himalaya. Field and remote-sensing based geomorphic analyses, and geochronologic 40Ar/39Ar data on synkinematic muscovites along normal faults help elucidate widespread E-W extension in the NW Indian Himalaya which must have started at approximately 14-16 Ma, if not earlier. In addition, I documented and mapped fault scarps in Quaternary sedimentary deposits using satellite imagery and field inspection. Furthermore, I made field observations of regional normal faults, compiled structures from geological maps and put them in a regional context. Finally, I documented seismites in lake sediments close to the currently most active normal fault in the study area in order to extend the (paleo) seismic record of this particular fault. Taken together, this data sets document that E-W extension is the dominant active deformation style in the internal parts of the orogen. In addition, the combined field, geomorphic and remote-sensing data sets prove that E-W extension occurs in a much more larger region toward the south and west than the seismicity data have suggested. In conclusion, the data presented here reveal the importance of extension in a region, which is still dominated by ongoing collision and shortening. The regional fault distribution and cross-cutting relationships suggest that extension parallel and perpendicular to the strike of the orogen are an integral part of the southward propagation of the active thrust front and the associated lateral growth of the Himalayan arc. In the light of a wide range of models proposed for extension in the Himalaya and the Tibetan plateau, I propose that E-W extension in the NW Indian Himalaya is transferred from the Tibetan Plateau due the inability of the Karakorum fault (KF) to adequately accommodate ongoing E-W extension on the Tibetan Plateau. Furthermore, in line with other observations from Tibet, the onset of E-W normal faulting in the NW Himalaya may also reflect the attainment of high topography in this region, which generated crustal stresses conducive to spatially extensive extension.Die Hauptaufgabe von MHC-kodierten Proteinen ist die Erkennung von körperfremden Molekülen sowie das Einleiten einer adäquaten Immunantwort, womit sie eine Schlüsselrolle im Immunsystem der Wirbeltiere einnehmen. Man nimmt an, dass ihre außergewöhnliche Vielfalt eine Antwort auf die sich ständig anpassenden Parasiten und Krankheitserreger ist, durch adaptive Selektion erhalten wird und dass die individuelle Allelausstattung einen Großteil der Parasitenbelastung erklärt, wofür bereits zahlreiche MHC-Studien Hinweise gefunden haben. Trotzdem ist unser Verständnis über die wirkenden Mechanismen teilweise noch lückenhaft. Ein stark vernachlässigter Aspekt hierbei sind z.B. eventuelle Unterschiede in der Genexpression der MHC-Allele und eine geringere Expression wäre gleichbedeutend mit einer geringeren Aktivierung des Immunsystems. Ich habe hierzu zwei frei lebende Kleinsäugerarten (Delomys sublineatus, Apodemus flavicollis) unter natürlichen Selektionsbedingungen untersucht. Dabei habe ich neben der genotypischen Diversität von MHC-Genen auch deren Expression, sowie die Genexpression immunregulativer Zytokine mit in Betracht gezogen und in Relation zur individuellen Belastung mit gastrointestinalen Helminthen Das gleichzeitige Auftreten von Verkürzung und Dehnung (Extension) ist ein charakteristisches Kennzeichen bei der Bildung von Kollisionsgebirgen. Eine bis heute gängige These beinhaltet ein weit verbreitetes Auftreten von bschiebungen jedoch erst in späteren Stadien der Gebirgsbildung, bzw. nach deren Abschluÿ. Verkürzung ist hingegen während der gesamten Gebirgsbildung zu beobachten. Auch wenn Extensionsprozesse einen wesentlichen Bestandteil der Gebirgsbildung darstellen, ist deren räumlichen und zeitlichen Abfolge sowie ihre kinematische Kopplung zu Verkürzungstrukturen nur wenig gesichert. Der Himalaja, durch die Kollision von Indien und Eurasien entstanden, bildet den südlichen Rand des tibetischen Hochplateaus und stellt ein typisches aktives Kollisionsgebilde dar. Während heutzutage an der Gebirgsfront Überschiebungen beobachtet werden, können mehrere Generationen an Extensionsstrukturen in den hochgelegenen Regionen des Himalajas dokumentiert werden, die sowohl parallel als auch senkrecht zur Gebirgsfront verlaufen. Im NW Indiens zeugen Erdbebendaten sowie regionale GPS-Daten von andauernder E-W-Extension. Im Gegensatz zu anderen im Himalaja beschriebenen Extensionsstrukturen ist diese Extensionsrichtung jedoch weder parallel noch senkrecht zur NE-SW orientierten regionalen Verkürzungsrichtung. In der vorliegenden Arbeit nutze ich diesen schiefen Winkel zwischen der Ausrichtung des Gebirges einerseits und den mit E-W-Extension assoziierten Strukturen andererseits, um mögliche Ursachen für verschiedene Extensionsarten differenzieren zu können. So könnte Extension entweder durch Prozesse innerhalb des tibetischen Hochplateaus gesteuert werden, oder durch die Krümmung des Himalajas, der bogenförmig verläuft. Um dies zu untersuchen, verwende ich einen neuen störungskinematischen Datensatz aus systematischen Messungen von ca. 2000 spröden Störungsflächen im Aufschlussmaßstab über den gesamten Bereich des Himalajas in NW Indien. Zusammen mit Geländebeobachtungen, aus denen eine relative Altersabfolge abgeleitet werden konnte, ermöglicht mir dieser Datensatz zwischen sechs einzelnen Deformationsarten zu differenzieren. Die meisten dieser Deformationsarten sind zeitlich und räumlich verbunden und zeigen fortschreitende Verkürzung an, gleichzeitig werden auch signifikante Extensionsrichtungen dokumentiert. Unter anderem kann ich hier zum ersten Mal eine separierte Abfolge von Extension parallel zum Himalaja-Bogen bzw. E-W-Extension dokumentieren. Ein weiteres Ziel dieser Studie ist es, einen detaillierten Überblick über die E-W-Extension im NW indischen Himalaja zu erhalten. Basierend auf Kartierung von jungen Bruchstufen sowie geomorphologische Auswertungen, 40Ar/39Ar-daten von synkinematisch gewachsenen Muskoviten auf Abschiebungen, sowie einer Kompilierung von eigene Geländebeobachtungen gröÿerer Abschiebungen mit schon publizierten Strukturen, konnte ich die räumliche Ausdehnung der E-W-Extension sowie deren zeitliche Einordnung als jüngstes Deformationsereignis belegen. Schlussendlich konnte ich anhand von Deformation in Seeablagerungen in der Nähe der momentan aktivsten Abschiebung im Untersuchungsgebiet den Nachweis an paläoseismologischen Ereignissen entlang dieser Störung ausweiten. Mit diesem Datensatz kann ich nachweisen, dass E-W-Extension in einem wesentlich ausgedehnteren Gebiet nach Süden und Westen hin auftritt, als bisher vorhandene Daten dies vermuten lassen, und dass E-W-Extension vor 14-16 Ma begann, wenn nicht sogar noch früher. Zusammenfassend bezeugen die hier präsentierten Daten die Relevanz von Extension in einer von Verkürzung geprägten Region. Die räumliche Verteilung von Störungen sowie Überschneidungskriterien lassen vermuten, dass Extension sowohl parallel wie auch senkrecht zum Himalaja-Bogen ein essentieller Teil des südwärts gerichteten Wanderns der aktiven Überschiebungsfront und des damit assoziierten lateralen Wachstums des Gebirges ist. Nach Abwägung der groÿen Bandbreite an Modellen für Extension im Himalaja und im tibetischen Hochplateau, bin ich der Meinung, dass E-W-Extension im NW indischen Himalaja ihren Ursprung im tibetischen Hochplateau hat. Grund dafür ist, dass die Bewegung entlang der Karakorum-Störung nicht ausreichend ist, um die fortdauernde E-W-Extension im tibetischen Hochplateau zu kompensieren. In Übereinstimmung mit anderen Beobachtungen in Tibet ist es auÿerdem möglich, dass das Einsetzen von E-W-Extension im NW Himalaja ebenfalls Erreichen der hohen Topographie in dieser Gegend widerspiegelt, durch die krustale Prozesse in Gang gesetzt werden, die wiederum zu räumlich ausgedehnten Extensionsprozessen führen können.. Anhand von Leber und Milzproben beider Arten habe ich die Methode der ‚real-time PCR‘ zur relativen Quantifizierung von mRNA im Labor etabliert. Bereits für die Labormaus etablierte PCR-Primersysteme wurden an beiden Arten getestet und so konnten stabile Referenzgene gefunden werden, die Grundvoraussetzung für zuverlässige Genexpressionsmessungen. Für D. sublineatus konnte gezeigt werden, dass Helminthenbefall eine typische Th2 Immunantwort induziert, und dass der Zytokin Il4 Gehalt mit Befallsintensität strongyler Nematoden zunimmt. Es wurde für D. sublineatus kein signifikanter Zusammenhang zwischen MHC Expression oder anderen Zytokinen mit Helminthenbefall gefunden. In A. flavicollis wurde ein negativer Zusammenhang zwischen haptischer MHC-Expression und dem parasitären Nematoden Heligmosomoides polygyrus festgestellt, was auf eine Immunvermeidungsstrategie des Nematoden hindeutet. Ich fand typische positive und negative Assoziationen zwischen MHC-Allelen und anderen Helminthenarten, sowie Zeichen eines positiven Selektionsdruckes auf den MHC-Sequenzen, was sich durch eine erhöhte Rate aminosäureverändernder Mutationen zeigte. Diese nicht-synonymen Veränderungen waren auf Positionen innerhalb des zweiten Exons des DRB-Genes beschränkt, wohingegen die untersuchten Bereiche des ersten und dritten Exons stark konserviert vorlagen. Diese variablen Positionen kodieren Schlüsselstellen im Bereich der Antigenbindungsstelle im MHC Molekül. Zusammenfassend zeigt diese Arbeit, dass Genexpressionsstudien auch an Wildtieren durchgeführt und verlässliche Daten erzeugt werden können. Zusätzlich zur strukturellen Vielfalt sollten zukünftig auch mögliche Genexpressionsunterschiede bei MHC-Studien berücksichtigt werden, um ein kompletteres Bild der koevolutiven Wirt-Parasiten-Beziehungen zeichnen zu können. Dies ist vor allem dann von evolutiver Bedeutung, wenn die Parasiten in der Lage sind die MHC Expression aktiv zu beeinflussen. Die Studien konnten nicht die exakte Bedeutung von MHC-Genexpression in der antagonistischen Koevolution definieren, aber sie konnten zeigen dass diese Bedeutung stark von den jeweils beteiligten Partnern abzuhängen vermag

    Aerogeophysikalische Daten rund um das Diendorf-Störungssystem

    No full text
    The aerogeophysical dataset contains geomagnetic, electromagnetic and radiometric (Th, U, K) data from five airborne surveys carried out between 1983 and 1997 in the northern part of Lower Austria:Geras (1996, 1997), Pulkau North (1995), Pulkau (1994), Kamptal-Ziersdorf (1983), Krems (1983).The five airborne surveys were conducted with different technical equipment. In 1998, the geomagnetic datasets were combined and reprocessed. The following corrections and reductions have been applied: 1) Normal Field Correction, 2) Heading Error Correction, 3) Reduction to the Pole. In addition, the electromagnetic datasets were also combined and reprocessed. Since reprocessing modern modelling software often includes a reduction to the pole, the magnetic dataset, published here, is corrected, but no reduction-to-the-pole is applied. In 1998 the electromagnetic data sets were also combined and reprocessed. The radiometric data from the five survey sites were combined into one dataset and adjusted to each other in 2009 (using the "levelling" method).The reprocessed data has been reused in two studies: 1) Paoletti et al. (2022) use all five datasets to estimate the location of tectonic faults in 3-dimensional space using software developed at the University of Naples.2) Schattauer et al. (2022) also use all five datasets to test the usability of different GIS tools for rapid interpretation of aerogeophysical data.Detailed description of data acquisition and processing are provided in both mentioned publications and the references therein.Dieser aerogeophysikalische Datensatz beinhaltet geomagnetische, elektromagnetische und radiometrische (Th, U, K) Daten von fünf Helikopterbefliegungen, die zwischen 1983 und 1997 im nördlichen Niederösterreich durchgeführt wurden: Geras (1996, 1997), Pulkau North (1995), Pulkau (1994), Kamptal-Ziersdorf (1983), Krems (1983). Die fünf Aufnahmen erfolgten mit technisch unterschiedlichen Geräten. Daher wurde im Jahr 1998 die einzelnen geomagnetischen Datensätze zusammengefügt und gemeinsam reprozessiert. Folgende Korrekturen und Reduktionen wurden durchgeführt: 1) Normalfeldkorrektur, 2) heading-Fehlerkorrektur, 3) Polreduktion. Da eine Neubearbeitung mit aktueller Modellierungssoftware häufig eine Polreduktion beinhaltet ist hier der korrigierte, aber nicht polreduzierte magnetische Datensatz als Raster publiziert. Auch die elektromagnetischen Datensätze wurden 1998 kombiniert und reprozessiert. Die radiometrischen Daten der fünf Messgebiete wurden 2009 zusammengeführt und aneinander angeglichen (mit der Methode des "Levellings"). Die reprozessierten Daten stehen hier zum Download zur Verfügung und wurden für folgende Studien verwendet:1) Paoletti et al. (2022) verwenden alle fünf Datensätze, um mithilfe von, an der Uni Neapel entwickelter, Software die Lage von tektonischen Störungen im 3-dimensionalen Raum abzuschätzen.2) Schattauer et al. (2022) verwenden ebenso alle fünf Datensätze, um die Anwendung verschiedener GIS-tools für eine schnelle Interpretation von aerogeophysikalischen Daten zu testen.Eine ausführliche Beschreibung der Datenaufnahme und deren Processing sind in beiden Publikationen und den dort erwähnten Referenzen beschrieben.The methods and equipment for acquisition and (re)processing are described in detail in both linked publications (Schattauer et al., 2022, Paoletti et al., 2022) and the references mentioned therein.Die verwendeten Methoden und Ausrüstung für die Aufnahme und für das (Re)processing sind ausführlich in beiden verlinkten Publikationen (Schattauer et al., 2022, Paoletti et al., 2022) sowie in den darin erwähnten Referenzen beschrieben

    The Usage of GIS Tools on Vintage Aerogeophysical Data for Simple and Fast Processing with a Focus on Fault Interpretation: An Austrian Case Study

    No full text
    The reuse of vintage datasets which were acquired in the 20th century can pose challenges for modern geophysical modeling due to missing detailed preprocessing information, significant uncertainties, or lack of precise tracking, etc. Nevertheless, they are often the only available datasets in a target region. We explore here the potential of such vintage airborne geophysical datasets (magnetics, AEM, radiometrics) to detect the location and dip direction of geological faults, using a non-modeling interpretation approach based on multiple GIS tools. We apply our approach in a geologically well-known region where four different types of faults are mapped. The applicability of the tools used in this study depend on the geological setting of each fault and is evaluated based on the comparison with geological and—where available—with modeling data. In general, the GIS tools, especially used on a combination of datasets, show reliable results concerning the location and strike of faults, and even seem to be able to predict the dip direction of a fault

    The role of extension during brittle deformation within the NW Indian Himalaya

    No full text
    Synorogenic extension has been recognized as an integral structural constituent of mountain belts and high-elevation plateaus during their evolution. In the Himalaya, both orogen-parallel and orogen-normal extension has been recognized. However, the underlying driving forces for extension and their timing are still a matter of debate. Here we present new fault kinematic data based on systematic measurements of hundreds of outcrop-scale brittle fault planes in the NW Indian Himalaya. This new data set, as well as field observations including crosscutting relationships, mineral fibers on fault planes, and correlations with deformation structures in lake sediments, allows us to distinguish different deformation styles. The overall strain pattern derived from our data reflects the large regional contractional deformation pattern very well but also reveals significant extensional deformation in a region, which is dominated by shortening. In total, we were able to identify six deformation styles, most of which are temporally and spatially linked, representing protracted shortening. Our observations also furnish the basis for a detailed overview of the younger deformation history in the NW Himalaya, which has been characterized by extension overprinting previously generated structures related to shortening. The four dominant deformation styles are (1) shortening parallel to the regional convergence direction; (2) arc-normal extension; (3) arc-parallel extension; and finally, (4) E-W extension. This is the first data set where a succession of both arc-normal and E-W extension has been documented in the Himalaya. Importantly, our observations help differentiate E-W extension triggered by processes within the Tibetan Plateau from arc-parallel and arc-normal extension originating from the curvature of the Himalayan orogen

    Geophysical Study of the Diendorf-Boskovice Fault System (Austria)

    No full text
    We describe here the results of the characterization of subsurface structures in an area of the south-eastern edge of the Bohemian Massif, in Austria by high-resolution geophysical survey techniques and advanced analysis methods of potential fields. The employed methods included potential field multiscale techniques for source-edge location and characterization of sources at depth. Our results confirmed the presence of already known structures: the location of the Diendorf Fault and the Moldanubian Shearzone are clearly recognized in the data at the same location as on the geological maps, even where the Diendorf fault is covered with sediments of the Molasse Basin. In addition, we detected several geological contacts between different rock types in the Bohemian Massif west of the Diendorf Fault. From our results, we were also able to quickly identify and image, without a priori information, previously unknown structures, such as faults with-depth-to-the top of about 500 m and magmatic intrusions about 400 m deep

    Implications from palaeoseismological investigations at the Markgrafneusiedl Fault (Vienna Basin, Austria) for seismic hazard assessment

    No full text
    Intraplate regions characterized by low rates of seismicity are challenging for seismic hazard assessment, mainly for two reasons. Firstly, evaluation of historic earthquake catalogues may not reveal all active faults that contribute to regional seismic hazard. Secondly, slip rate determination is limited by sparse geomorphic preservation of slowly moving faults. In the Vienna Basin (Austria), moderate historical seismicity (Imax,obs/Mmax,obs=8/5.2) concentrates along the left-lateral strike-slip Vienna Basin Transfer Fault (VBTF). In contrast, several normal faults branching out from the VBTF show neither historical nor instrumental earthquake records, although geomorphological data indicate Quaternary displacement along those faults. Here, located about 15 km outside of Vienna, the Austrian capital, we present a palaeoseismological dataset of three trenches that cross one of these splay faults, the Markgrafneusiedl Fault (MF), in order to evaluate its seismic potential. Comparing the observations of the different trenches, we found evidence for five to six surface-breaking earthquakes during the last 120 kyr, with the youngest event occurring at around 14 ka. The derived surface displacements lead to magnitude estimates ranging between 6.2±0.5 and 6.8±0.4. Data can be interpreted by two possible slip models, with slip model 1 showing more regular recurrence intervals of about 20–25 kyr between the earthquakes with M≥6.5 and slip model 2 indicating that such earthquakes cluster in two time intervals in the last 120 kyr. Direct correlation between trenches favours slip model 2 as the more plausible option. Trench observations also show that structural and sedimentological records of strong earthquakes with small surface offset have only low preservation potential. Therefore, the earthquake frequency for magnitudes between 6 and 6.5 cannot be constrained by the trenching records. Vertical slip rates of 0.02–0.05 mm a−1 derived from the trenches compare well to geomorphically derived slip rates of 0.02–0.09 mm a−1. Magnitude estimates from fault dimensions suggest that the largest earthquakes observed in the trenches activated the entire fault surface of the MF including the basal detachment that links the normal fault with the VBTF. The most important implications of these palaeoseismological results for seismic hazard assessment are as follows. (1) The MF is an active seismic source, capable of rupturing the surface despite the lack of historical earthquakes. (2) The MF is kinematically and geologically equivalent to a number of other splay faults of the VBTF. It is reasonable to assume that these faults are potential sources of large earthquakes as well. The frequency of strong earthquakes near Vienna is therefore expected to be significantly higher than the earthquake frequency reconstructed for the MF alone. (3) Although rare events, the potential for earthquake magnitudes equal or greater than M=7.0 in the Vienna Basin should be considered in seismic hazard studies.© Author(s) 201
    corecore