37 research outputs found

    ParaDime: A Framework for Parametric Dimensionality Reduction

    Full text link
    ParaDime is a framework for parametric dimensionality reduction (DR). In parametric DR, neural networks are trained to embed high-dimensional data items in a low-dimensional space while minimizing an objective function. ParaDime builds on the idea that the objective functions of several modern DR techniques result from transformed inter-item relationships. It provides a common interface to specify the way these relations and transformations are computed and how they are used within the losses that govern the training process. Through this interface, ParaDime unifies parametric versions of DR techniques such as metric MDS, t-SNE, and UMAP. Furthermore, it allows users to fully customize each aspect of the DR process. We show how this ease of customization makes ParaDime suitable for experimenting with interesting techniques, such as hybrid classification/embedding models or supervised DR, which opens up new possibilities for visualizing high-dimensional data

    ConfusionFlow: A Model-Agnostic Visualization for Temporal Analysis of Classifier Confusion

    Get PDF
    Classifiers are among the most widely used supervised machine learning algorithms. Many classification models exist, and choosing the right one for a given task is difficult. During model selection and debugging, data scientists need to assess classifiers' performances, evaluate their learning behavior over time, and compare different models. Typically, this analysis is based on single-number performance measures such as accuracy. A more detailed evaluation of classifiers is possible by inspecting class errors. The confusion matrix is an established way for visualizing these class errors, but it was not designed with temporal or comparative analysis in mind. More generally, established performance analysis systems do not allow a combined temporal and comparative analysis of class-level information. To address this issue, we propose ConfusionFlow, an interactive, comparative visualization tool that combines the benefits of class confusion matrices with the visualization of performance characteristics over time. ConfusionFlow is model-agnostic and can be used to compare performances for different model types, model architectures, and/or training and test datasets. We demonstrate the usefulness of ConfusionFlow in a case study on instance selection strategies in active learning. We further assess the scalability of ConfusionFlow and present a use case in the context of neural network pruning

    ProjectionPathExplorer: Exploring Visual Patterns in Projected Decision-Making Paths

    Full text link
    In problem-solving, a path towards solutions can be viewed as a sequence of decisions. The decisions, made by humans or computers, describe a trajectory through a high-dimensional representation space of the problem. By means of dimensionality reduction, these trajectories can be visualized in lower-dimensional space. Such embedded trajectories have previously been applied to a wide variety of data, but analysis has focused almost exclusively on the self-similarity of single trajectories. In contrast, we describe patterns emerging from drawing many trajectories---for different initial conditions, end states, and solution strategies---in the same embedding space. We argue that general statements about the problem-solving tasks and solving strategies can be made by interpreting these patterns. We explore and characterize such patterns in trajectories resulting from human and machine-made decisions in a variety of application domains: logic puzzles (Rubik's cube), strategy games (chess), and optimization problems (neural network training). We also discuss the importance of suitably chosen representation spaces and similarity metrics for the embedding.Comment: Final version; accepted for publication in the ACM TiiS Special Issue on "Interactive Visual Analytics for Making Explainable and Accountable Decisions

    Drag-Based CME Modeling With Heliospheric Images Incorporating Frontal Deformation : ELEvoHI 2.0

    Get PDF
    The evolution and propagation of coronal mass ejections (CMEs) in interplanetary space is still not well understood. As a consequence, accurate arrival time and arrival speed forecasts are an unsolved problem in space weather research. In this study, we present the ELlipse Evolution model based on HI observations (ELEvoHI) and introduce a deformable front to this model. ELEvoHI relies on heliospheric imagers (HI) observations to obtain the kinematics of a CME. With the newly developed deformable front, the model is able to react to the ambient solar wind conditions during the entire propagation and along the whole front of the CME. To get an estimate of the ambient solar wind conditions, we make use of three different models: Heliospheric Upwind eXtrapolation model (HUX), Heliospheric Upwind eXtrapolation with time dependence model (HUXt), and EUropean Heliospheric FORecasting Information Asset (EUHFORIA). We test the deformable front on a CME first observed in STEREO-A/HI on February 3, 2010 14:49 UT. For this case study, the deformable front provides better estimates of the arrival time and arrival speed than the original version of ELEvoHI using an elliptical front. The new implementation enables us to study the parameters influencing the propagation of the CME not only for the apex, but for the entire front. The evolution of the CME front, especially at the flanks, is highly dependent on the ambient solar wind model used. An additional advantage of the new implementation is given by the possibility to provide estimates of the CME mass.Peer reviewe

    Prediction of the in situ coronal mass ejection rate for solar cycle 25: Implications for Parker Solar Probe in situ observations

    Get PDF
    The Parker Solar Probe (PSP) and Solar Orbiter missions are designed to make groundbreaking observations of the Sun and interplanetary space within this decade. We show that a particularly interesting in situ observation of an interplanetary coronal mass ejection (ICME) by PSP may arise during close solar flybys (<0.1< 0.1~AU). During these times, the same magnetic flux rope inside an ICME could be observed in situ by PSP twice, by impacting its frontal part as well as its leg. Investigating the odds of this situation, we forecast the ICME rate in solar cycle 25 based on 2 models for the sunspot number (SSN): (1) the forecast of an expert panel in 2019 (maximum SSN = 115), and (2) a prediction by McIntosh et al. (2020, maximum SSN = 232). We link the SSN to the observed ICME rates in solar cycles 23 and 24 with the Richardson and Cane list and our own ICME catalog, and calculate that between 1 and 7 ICMEs will be observed by PSP at heliocentric distances <0.1< 0.1 AU until 2025, including 1σ\sigma uncertainties. We then model the potential flux rope signatures of such a double-crossing event with the semi-empirical 3DCORE flux rope model, showing a telltale elevation of the radial magnetic field component BRB_R, and a sign reversal in the component BNB_N normal to the solar equator compared to field rotation in the first encounter. This holds considerable promise to determine the structure of CMEs close to their origin in the solar corona.Comment: 11 pages, 6 figures, accepted for publication in the Astrophysical Journal on 2020 September 1
    corecore