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ConfusionFlow: A model-agnostic visualization
for temporal analysis of classifier confusion

Andreas Hinterreiter∗, Peter Ruch∗, Holger Stitz, Martin Ennemoser,

Jürgen Bernard, Hendrik Strobelt, and Marc Streit

Abstract—Classifiers are among the most widely used supervised machine learning algorithms. Many classification models exist, and

choosing the right one for a given task is difficult. During model selection and debugging, data scientists need to assess classifiers’

performances, evaluate their learning behavior over time, and compare different models. Typically, this analysis is based on

single-number performance measures such as accuracy. A more detailed evaluation of classifiers is possible by inspecting class errors.

The confusion matrix is an established way for visualizing these class errors, but it was not designed with temporal or comparative

analysis in mind. More generally, established performance analysis systems do not allow a combined temporal and comparative analysis

of class-level information. To address this issue, we propose ConfusionFlow, an interactive, comparative visualization tool that combines

the benefits of class confusion matrices with the visualization of performance characteristics over time. ConfusionFlow is model-agnostic

and can be used to compare performances for different model types, model architectures, and/or training and test datasets. We

demonstrate the usefulness of ConfusionFlow in a case study on instance selection strategies in active learning. We further assess the

scalability of ConfusionFlow and present a use case in the context of neural network pruning.

✦

1 INTRODUCTION

C LASSIFICATION is one of the most frequent machine
learning (ML) tasks. Many important problems from

diverse domains, such as image processing [25], [32], natural
language processing [21], [40], [49], or drug target predic-
tion [36], can be framed as classification tasks. Sophisticated
models, such as neural networks, have been proven to be
effective, but building and applying these models is difficult.
This is especially the case for multiclass classifiers, which
can predict one out of several classes—as opposed to binary
classifiers, which can only predict one out of two.

During the development of classifiers, data scientists are
confronted with a series of challenges. They need to observe
how the model performance develops over time, where the
notion of time can be twofold: on the one hand, the general
workflow in ML development is incremental and iterative,
typically consisting of many sequential experiments with
different models; on the other hand, the actual (algorithmic)
training of a classifier is itself an optimization problem,
involving different model states over time. In the first case,
comparative analysis helps the data scientists gauge whether
they are on the right track. In the latter case, temporal
analysis helps to find the right time to stop the training, so
that the model generalizes to unseen samples not represented
in the training data.
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Model behavior can depend strongly on the choices of
hyperparameters, optimizer, or loss function. It is usually
not obvious how these choices affect the overall model
performance. It is even less obvious how these choices
might affect the behavior on a more detailed level, such as
commonly “confused” pairs of classes. However, knowledge
about the class-wise performance of models can help data
scientists make more informed decisions.

To cope with these challenges, data scientists employ
three different types of approaches. One, they assess single
value performance measures such as accuracy, typically by
looking at temporal line charts. This approach is suitable for
comparing learning behavior, but it inherently lacks informa-
tion at the more detailed class level. Two, data scientists use
tools for comparing the performances of classifiers. However,
these tools typically suffer from the same lack of class-level
information, or they are not particularly suited for temporal
analysis. Three, data scientists assess class-level performance
from the class-confusion matrix [50]. Unfortunately, the rigid
layout of the classic confusion matrix does not lend itself
well to model comparison or temporal analysis.

So far, few tools have focused on classification analysis
from a combined temporal, model-comparative, and class-
level perspective. However, gaining insights from all three
points of view in a single tool can (1) serve as a starting
point for interpreting model performances, (2) facilitate the
navigatiion through the space of model adaptations, and
(3) lead to a better understanding of the interactions between
a model and the underlying data.

The primary contribution of our paper is ConfusionFlow,
a precision- and recall-based visualization that enables tem-
poral, comparative, and class-level performance analysis at
the same time. To this end, we introduce a temporal adaptation
of the traditional confusion matrix.

As secondary contributions we present (1) a thorough
problem space characterization of classifier performance
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Fig. 1. A classifier’s performance can be evaluated on three levels of detail: global aggregate scores (L1); class-conditional scores and class
confusion (L2); and detailed, instance-wise information (L3). ConfusionFlow operates on the class level L2, enabling a temporal analysis of the
learning behavior.

analysis, including a three-level granularity scheme; (2) a case
study showing how ConfusionFlow can be applied to analyze
labeling strategies in active learning; (3) an evaluation of
ConfusionFlow’s scalability; and (4) a usage scenario in the
context of neural network pruning.

2 PROBLEM SPACE CHARACTERIZATION

The development of new classification models or the adapta-
tion of an existing model to a new application domain are
highly experimental tasks. A user is confronted with many
different design decisions, such as choosing an architecture, a
suitable optimization method, and a set of hyperparameters.
All of these choices affect the learning behavior considerably,
and influence the quality of the final classifier. Consequently,
to obtain satisfying results, multiple classifiers based on
different models or configurations need to be trained and
evaluated in an iterative workflow. Here, we chose the term
configuration to refer to the set of model, optimization tech-
niques, hyperparameters, and input data. This design process
requires the user to compare the learning behaviors and
performances of different models or configurations across
multiple training iterations. To this end, model developers
typically inspect performance measures such as precision
and recall1. Depending on the measures used, the analysis
can be carried out on three levels of detail.

2.1 Analysis Granularity

Based on our reflection of related works (see Section 3), most
performance analysis tasks for classifiers can be carried out
on three levels of detail (see Figure 1, left):

L1 Global level—At the global level, the classifier’s perfor-
mance is judged by aggregate scores that sum up the
results for the entire dataset in a single number. The over-
all accuracy is a typical example for a global performance
measure. For showing trends across multiple training
iterations, global aggregate scores can be represented in
simple line charts.

1. We provide detailed definitions of the most common performance
metrics in the Supplementary Information (see Section S 1.

L2 Class level—At the class level, performance measures are
derived from subsets of the results based on specific class
labels. Typical performance measures at the class level
are class-wise accuracy, precision, or recall. Like for the
global level, the temporal evolution of these measures
throughout training can be visualized as line charts.
More detailed class-level information is contained in the
confusion matrix. This work addresses the problem of
visualizing the confusion matrix across multiple training
iterations.

L3 Instance level—At the instance level, quality assessment
is based on individual ground truth labels and predicted
labels (or predicted class probabilities). This allows
picking out problematic input data. Strategies for how to
further analyze these instances vary strongly between dif-
ferent models and data types. Depending on the specific
problem, interesting information may be contained in
input images or feature vectors, network outputs, neuron
activations, and/or more advanced concepts such as
saliency maps [47].

These three levels are different degrees of aggregation
of individual instance predictions. Figure 1 (right) shows
schematically how data at these levels can be visualized
across iterations to enable an analysis of the training progress.

ConfusionFlow aims at a temporal analysis of per-class
aggregate scores, introducing a visualization of the confu-
sion matrix across training iterations. ConfusionFlow thus
operates on the second of the three levels (L2).

2.2 Analysis Tasks

ConfusionFlow is designed for experts in data science and
ML, ranging from model developers to model users. Building
upon the reflection of these user groups from related work
(see Section 3) and the characterization of the working
practices of our collaborators, we break-down user goals and
intents into a task characterization as follows. The principal
structure of tasks is along two axes, which correspond to the
two high-level goals of comparative analysis (G1) and temporal
analysis (G2).

The comparative axis differentiates within-classification
comparisons from between-classification comparisons. This
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Temporal analysis of training (T2)

D(  1)(Y1)

C(01)(X1) C(02)(X2) C(0T)(XT)

Comparison of classifier
performance (T1)

Comparison of learning
behavior (T1 + T2)

D(  2)(Y2) D(  T)(YT)

Fig. 2. Principle working practice as observed with our collaborators. The
two main goals of comparative and/or temporal analysis of classifiers led
us to define the two axes that help to structure the analysis tasks. This
schematic shows the most general case of different models and different,
changing datasets.

frequently used within/between dichotomy accounts for
analyses that are conducted with a single classification
result (within), as well as those relevant for multiple results
(between). The notion of within-comparison also alludes
to the different levels of detail discussed in Section 2.1.
All between-classification analyses share the principle of
comparing multiple classification results. In general, users
have a series of classification configurations at hand, aiming
at identifying commonalities and differences. According to
our collaborators, multiple classification configurations can
result from (a) different (hyper-)parameter choices of the
same model, (b) different classification models, or (c) dif-
ferent datasets or dataset folds used for classifier training
and validation. While the differentiation between these three
different types of classification configurations is interesting
from a methodological perspective, the requirements to tools
for quality assessment are very similar.

The second axis structures the temporal analysis tasks
(G2). Along this axis we differentiate between tasks as they
are typically applied in time series analysis [2]: looking up
values, assessing trends, and finding anomalies.

The complete crosscut of these two axes leads to six
primary analysis tasks, T1 to T6, which are listed in Table 1.
Fore each task, an exemplary scenario is given, which
explains how the abstract low-level task relates to the ML
analysis procedure.

In section 2.1, we already hinted at the fact that existing
tools mostly support temporal analysis (G2) only on a
global level (L1). As our literature survey below will show,
comparison between classifiers (G1b) is rarely supported
on a class level. The main novelty of ConfusionFlow is
enabling precision- and recall-based class-level analysis in a
comparative and temporal way.

Figure 2 illustrates all possible scenarios of performing the
high level tasks G1 and G2 at the same time, with special focus
on between-classification comparison (G1b). This schematic
shows the most general case, i.e., when both the models
(C ⇔ D) and the datasets (X ⇔ Y) are different, and the
datasets additionally change over time (Xi , X j). Many
specialized comparison and/or temporal analysis tasks can
be derived from the general case depicted in Figure 2, when
either the dataset or the model are kept constant:

• In the simple case of observing how a single model is

trained on a constant data set (Xt � X for all t), the user
is interested only in the sequence C(θ1)(X) · · · C(θT)(X).
This corresponds to the performance measuring (T1) and
progress measuring tasks (T2).

• For comparing the final performances of two classifica-
tion models, C and D, acting on the same test set X, the
user analyzes the pair C(θT)(X) vs. D(ζT)(X). This is a
typical realization of task T4.

• Often, the performances of a classifier on two different
dataset folds, such as training and test folds, need to be
compared temporally. This scenario implies C � D, and
Xt � X and Yt � Y for all t, but X , Y. The user now
needs to compare the sequence C(θ1)(X) · · · C(θT)(X)

with the sequence C(θ1)(Y) · · · C(θT)(Y). This analysis
includes a comparative assessment of trends and
anomalies (tasks T5 and T6).

• A more complex example is the comparison of two
classifiers during active learning (see Section 5.1). In
this case, both models are trained on the same dataset,
but the dataset changes over time. The user compares
the sequence C(θ1)(X1) · · · C(θT)(XT) with the sequence
D(ζ1)(X1) · · · D(ζT)(XT). All fine-grained tasks T1 to T6

may be relevant in this complex example.

We deliberately kept all example scenarios in Table 1
level-agnostic. The tasks T1 to T6 are equally relevant on
any of the three levels of detail. ConfusionFlow focuses on
enabling users to perform the tasks on the class level L2, but
also includes some global information deducible from the
confusion matrix.

3 RELATED WORK

The recent resurgence of ML in general and the increasing
popularity of deep learning in particular have led to an
increased demand for ML development and monitoring
tools, but also to an increased desire to better understand
existing techniques. This interplay between algorithm design
on the one hand, and the challenge of making ML algorithms
explainable or interpretable on the other hand, has spawned
high activity in the field of visualization for ML. The inter-
rogative survey by Hohman et al. [27] gives a comprehensive
overview of these recent advances.

In the following, we will discuss approaches that (1) target
the user goal of comparison across models and/or config-
urations (see goal G1b); (2) enable a temporal analysis of
the learning behavior (see goal G2); and/or (3) operate on
the class level (L2) as defined in our contextualization in
Section 2.1. Table 2 summarizes which of these three aspects
is covered by each of our selected publications. We also
briefly review previous work on time series visualization
and comparison, since ConfusionFlow is a small multiples
approach, that should support users in performing typical
temporal analysis tasks.

Our literature survey will show that hardly any tool so
far has focused on simultaneously addressing—on the class
level of detail (L2)—the two high-level goals of comparison
(especially between models, G1b) and temporal analysis (G2).

3.1 Model Comparison

Gleicher et al. structured the design space for visual compar-
isons into three main categories: juxtaposition, superposition,
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TABLE 1
Analysis tasks relevant to the design of ConfusionFlow. The space of low-level tasks T1–T6 is generated by two axes of high level goals,

comparative (G1) and temporal analysis (G2), respectively.

G1 Comparative analysis

a Within-classific. comparison b Between-classification comparison

G2 Temporal analysis Different models Different hyperparameters Different data

a Lookup values T1 Measure performance T4 Compare performances

Read off quality measure at
certain epoch

Assess final and
intermediate model
suitability

Relate final performance to
hyperparameter space

Estimate final
generalization
capabilities

b Assess trends T2 Measure learning progress T5 Compare learning progress

Assess characteristic
saturation curve for learning
process

Compare learning
speeds for different
models

Relate learning speeds to
hyperparameter choices

Identify over- or
underfitting

c Find anomalies T3 Detect temporal problems T6 Relate temporal problems

Identify performance spikes
and drops

Relate anomalies to
model

Relate learning failure to
parameter choice

Identify problematic
instance sampling

and explicit representation [20]. Most ML model comparison
visualizations use superposition for plots of single-number
performance metrics, and juxtaposition for comparison of
multidimensional (e.g., vectors or matrices) or unstructured
data (e.g., images or text).

One of the most well-known visualization systems for
developing, debugging, and evaluating neural networks
is TensorFlow’s TensorBoard by Abadi et al. [1], [58]. It
combines a visualization of the computation graph with
a display of various performance metrics, but it is not
designed for comparing multiple ML models in the same
view. TensorFlow also features Google’s What-If Tool [57],
which enables comparison of a model with a changed version
of itself upon hypothetical changes to the dataset.

For certain types of model architecture, tools with spe-
cialized comparison features have been developed: RNNVis
by Ming et al. [39] for recurrent neural networks, GANViz
by Wang et al. [56] for generative adversarial networks,
and CNNComparator by Zeng et al. [61] for convolutional
neural networks. RNNVis features a main view with a glyph
based sentence visualization. On demand, two models can be
compared side by side. GANViz focuses on the comparison
of the outputs of the generative network with those of the
discriminative network that together make up the GAN.
CNNComparator consists of a histogram of parameter values
for a selected network layer, a matrix visualization of the
convolution operation, as well as an instance-level side-by-
side comparison of two selected networks’ performances.
It allows comparison of two different configurations or
of two different model states for the same configuration,
but does not feature immediate access to class confusion
measures. ShapeShop by Hohman et al. [26] is aimed at
non-experts, and enables comparison of the performances of
convolutional neural networks. It is designed to give the user
a basic understanding of what the network learns, rather
than provide in-depth evaluation functionality.

Zhang et al. presented Manifold [62], a model-agnostic
framework for interpreting, comparing, and diagnosing
ML models. Small multiples of scatter plots visualize how
two different models generate different class outputs. Color
coding gives a sense of each model’s class confusion, but
there is no option to track the models’ learning behaviors.

Comparison of two models cannot only be used to select
which model performs better on its own. It can also be part
of a workflow to construct new ensemble models or adapt
models interactively. In van den Elzen’s and van Wijk’s
BaobabView [53], decision trees can be pruned interactively,
and the performances of the resulting tree can be compared
to the initial one, e.g., by looking at the confusion matrices.
EnsembleMatrix by Talbot et al. [52] displays confusion ma-
trices for different classifiers, allowing the user to construct
a weighted combination from among them. The resulting
ensemble model can be evaluated, again in terms of class
confusion.

Each of these techniques enables the user to compare
the performances of multiple models or model states in
some way (addressing goal G1b), but misses either the
temporal aspect (G2), or does not yield class confusion
information (L2).

3.2 Temporal Analysis of Training

We subdivide the review of temporal analysis of model
training into an elaboration of relevant temporal analysis
tasks, followed by an overview of approaches supporting the
temporal assessment of quality characteristics of classifiers.

In data mining, ML, and visualization research, principal
goals of temporal data analysis are the exploration, identifi-
cation, and localization of temporal patterns [16], [19], [38].
From task characterizations in the visualization community,
we adopt the notion of localizing single (i.e., atomic) values
as the finest granularity of temporal analysis [2], [5]. Building
upon these atomic localization tasks, most visualization
techniques support the assessment of multiple points in time,
enabling users to grasp higher-level structures, i.e., temporal
patterns. Depending on the application context, such patterns
often include trends, outliers, or periodic patterns [6]. For
the temporal analysis of model training, the identification of
trends plays a crucial role. As a rule, model performances
tend to increase throughout the learning process converging
towards some saturation value. Other frequently investigated
patterns include outliers and anomalies. The assessment of
anomalies in the context of ML models is highly relevant
but challenging. In contrast to trends and outliers, periodic
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patterns and cycles hardly play a role in the temporal analysis
of classifier training.

We now give an overview of specific ML performance
analysis tools that have addressed these general temporal
analysis tasks.

TensorBoard [1] and GanViz [56] augment their main vi-
sualization with line charts of accuracy or other performance
scores. Similarly, Chung et al. [14] show temporal training
statistics in an extra window of their ReVACNN system
for real-time analysis of convolutional neural networks.
In CNNComparator [61], limited temporal information is
accessible by comparing two model states from different
training epochs.

DeepEyes by Pezzotti et al. [42] is a progressive visual-
ization tool that combines curves for loss and accuracy with
perplexity histograms and activation maps. Progressive line
charts of loss during the training are also used in educa-
tional tools for interactive exploration, such as TensorFlow
Playground [48] or GAN Lab [29].

DeepTracker by Liu et al. [34] displays performance
data in a cube-style visualization, where training epochs
progress along one of the three axes. A different approach
to enable inspection of the learning behavior is a selector or
slider which is linked to a main visualization or multiple
visualizations in a dashboard and allows accessing individual
iterations. Chae et al. [13] made use of this technique in their
visualization of classification outcomes, as did Wang et al. in
DQNViz [55], a tool for understanding Deep Q-networks. In
one of the views in Bruckner’s ML-o-scope [12] an epoch
slider is tied to a confusion matrix, in which cells can be
interactively augmented with example instances. The Blocks
system by Alsallakh et al. [4] also features a confusion matrix
bound to an epoch slider. Blocks supports investigation of a
potential class hierarchy learned by neural networks, which
requires the visualization to be scalable to many classes.

Of all the tools for exploration of the learning be-
havior (G2) mentioned above, none focuses on class con-
fusion (L2) while also providing comparison functional-
ity (G1b).

3.3 Class Confusion

When evaluating the output of classifiers at level L2, class
confusion can be interpreted in two ways. Typically, it
describes the aggregate scores used in the individual cells
of the confusion matrix. However, the term “between-class
confusion” is sometimes also used to describe high proba-
bility values for more than one class in a classifier’s output
for an individual instance. In order to avoid ambiguity, we
will call this notion “per-instance classification uncertainty”
in our discussion.

Of the works mentioned so far, BaobabView [53], Ensem-
bleMatrix [52], ML-o-scope [12], and Blocks [4] all allow, at
least partially, performance analysis on the class level (L2).
In these tools, this is realized by visualizing class confusion
in terms of standard confusion matrices, either for the final
classifier or for one training step at a time.

The confusion matrix is also the heart of the ManiMatrix
tool by Kapoor et al. [30], where it is used to interactively
modify classification boundaries. This lets the user explore
how constraining the confusion for one pair of classes affects

TABLE 2
Publications related to ConfusionFlow, classified by whether they allow

between/classification comparison (G1b), offer temporal
information (G2), and/or operate at the class level (L2).

System Publication G1b G2 L2

RNNVis Ming et al. [39] ✔ N/A

CNNComparator Zeng et al. [61] ✔ ✔

GANViz Wang et al. [56] ✔ ✔ ✔

DQNViz Wang et al. [55] ✔ ✔ N/A

TensorBoard Abadi et al. [1] ✔ ✔

ReVACNN Chung et al. [14] ✔

DeepEyes Pezzotti et al. [42] ✔

DeepTracker Liu et al. [34] ✔ ✔

unnamed Chae et al. [13] ✔ ✔ ✔

Blocks Alsallakh et al. [4] ✔ ✔

ML-o-scope Bruckner [12] ✔ ✔

Confusion wheel Alsallakh et al. [3] ✔

ManiMatrix Kapoor et al. [30] ✔

Squares Ren et al. [44] ✔ ✔

BaobabView v. d. Elzen & v. Wijk [53] ✔ ✔

EnsembleMatrix Talbot et al. [52] ✔ ✔

Manifold Zhang et al. [62] ✔ ✔

✔ Covered ✔ Partly covered N/A Not applicable

the other pairs, aiming at class-level model optimization and
interpretability.

Next to the confusion matrix, some alternative ways
of evaluating classifier performance on level L2 have been
proposed. Alsallakh et al. introduced the confusion wheel [3].
It consists of a circular chord diagram, in which pairs of
classes with high confusion counts are connected with thicker
chords. On the outside, ring charts encode FN, FP, TP, and
TN distributions for each class. Squares by Ren et al. [44] is
focused on visualizing per-instance classification uncertainty.
Histograms of prediction scores can be unfolded to access
individual instances, whose predictions are then encoded
using parallel coordinates. Additionally, sparklines for each
class give an impression of aggregate class confusion. Squares
allows a hybrid-level (L2 and L3) confusion analysis.

None of the existing tools for class-level performance
analysis (L2) provide an immediate, temporal representation
of the learning behavior (G2), and most are relatively ill-
suited for between-classification comparison (G1b).

4 CONFUSIONFLOW TECHNIQUE

The ConfusionFlow interface consists of three views, as illus-
trated in Figure 3: (A) the ConfusionFlow matrix presenting the
confusion of one or more classifier(s) over time; (B) the class
performance and distribution view, including plots of precision,
recall, and F1-score, as well as visualizations of the instances’
class distributions; and (C) the detail view showing magnified
plots of interactively selected confusion or performance
curves. Additionally, ConfusionFlow features (D) a timeline
for selecting the range of training steps that are used for
exploration; and (E) an input field for loading datasets, which
also serves as a legend for the whole visualization.

Figure 3 shows how ConfusionFlow can be used to
compare the image classification performance of a neural
network on different datasets. For this example, we have
loaded confusion data for a neural network image classifier
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Fig. 3. The ConfusionFlow matrix (A) visualizes confusion of classifiers across training iterations. Performance data for multiple classifiers can be
loaded (E) and compared with each other. Additionally, class-wise performance measures and class distributions are displayed in a second view (B).
The timeline (D) allows interactive exploration and selection of temporal regions of interest. On demand, plots can be expanded to the detail view (C).
Here, we compare the performance of a neural network classifying images from the train set ( ) and test set ( ) of CIFAR-10 [31], and a recently
proposed alternative test set ( ) from CIFAR-10.1 [43], respectively. The line chart (C) shows that the relative number of misclassified images for the
selected classes auto and truck deviates notably between the original and the new test set. For the remaining classes the classifier performs similarly
on the new test set and the original CIFAR-10 test set.

Fig. 4. The ConfusionFlow matrix with its two different encoding options.
Left: Stacked heatmap encoding (lasagna plot [51]). Right: Superimposed
line charts with background heatmap corresponding to selected iteration.

trained on the training set ( ) of CIFAR-10 [31], and evaluated
on the images from the corresponding test set ( ), as well as
on a recently proposed new test set ( ) from CIFAR-10.1 [43],
respectively.

4.1 ConfusionFlow Matrix

The ConfusionFlow matrix, shown in Figures 3.A and 4,
is a visualization of classification errors that supports the
within- and between model comparison (G1) as well as
temporal analysis (G2). In the classic confusion matrix, cell
(i , j) lists the number of instances with ground truth label
of class i that are classified as class j. While the classic
confusion matrix is limited to showing confusion data for a

single model at one specific time step, the ConfusionFlow
matrix visualizes the class confusion for multiple classifiers
over multiple training steps (see Figure 1). As described
in Section 2.2, the different classifiers can come from ML
experiments with different models or ML experiments with
different datasets or dataset folds. The ConfusionFlow matrix
is a small multiples approach: for each cell, the single value
of the classic confusion matrix is replaced with a plot of the
values for a selected time range (see Figure 4).

The ConfusionFlow matrix should en-
able temporal analysis (G2) and compar-
ison (G1b) at the same time, while con-
serving the familiar layout of the confu-
sion matrix. This means that the confu-
sion visualization for each classification
model should only take up little space,
but should still be able to show a fine-
grained temporal resolution. At the same time, individual
temporal progressions for different models should be easily
distinguishable to enable users to perform tasks T2 and T5.
Accordingly, we chose the heatmap idiom for the visual-
ization of class confusions [7]. One-dimensional heatmaps,
sometimes called colorfields, have been shown to support
the task of time series comparison well, particularly in
terms of task completion time [22]. The thumbnail at the
top right of this paragraph shows how temporal confusion
values for a single cell of the matrix are encoded in this
idiom. Each matrix cell contains one time series per loaded
model. In a line chart encoding, multiple time series are
plotted together in the same chart (superposition strategy,
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cf. Gleicher et al. [20]). If each line is instead transferred to a
one-dimensional heatmap, the heatmaps can be stacked for
comparison without any overplotting issues (juxtaposition
strategy [20]). These stacked heatmaps are sometimes called
“lasagna plots” [51]. The confusion value is encoded as
brightness, and a unique hue is automatically assigned to
each classifier. To ensure visual consistency, the hue for each
classifier is kept constant across all linked views. The left
part of Figure 4 shows a matrix made up of such stacked
heatmaps in a real example.

Users can interactively switch from the heatmap
to a line chart encoding of class confusion. This op-
tion is available for two reasons. First, we found that
ML users are particularly used to viewing temporal
performance measures as line charts. Second, the
line charts can facilitate reading off and comparing
absolute values, either for individual epochs of
interest (T1) or between models (T4). If the line chart
encoding is selected and the user additionally selects
a single iteration (see Section 4.4 for information
on the timeline selector), then a stacked heatmap
of the confusion values for the selected iteration
is plotted as background for the line charts. An
example of this encoding is shown in the right
part of Figure 4. The gray background heatmaps
correspond to the confusion values for the three
models at the time step indicated by the dashed vertical line.
This additional background heatmap increases the visual
saliency of problematic class-pairs for the line chart encoding
This increased saliency is already inherent in the heatmap
encoding. The heatmap/line chart switch, as wells as several
other controls for visual encoding options, can be seen to the
left of the ConfusionFlow matrix in Figure 3.

To facilitate comparison of cells for a given predicted
class, time by default progresses left-to-right, regardless of
the encoding choice. This choice lines up with most users’
expectations for plots of time series data. On demand, users
can rotate the cell contents by 90◦ for easier comparison
along a given ground truth class, if the heatmap encoding is
selected.

The diagonal elements of the classic confusion matrix list
the numbers of correctly classified instances for each class.
For well-functioning classifiers, these numbers are typically
much higher than the confusion counts. To keep the user’s
focus on the exploration of the error behavior and to keep
lookup of confusion values feasible (T1 and T4), we decided
to replace the diagonal cells in the ConfusionFlow matrix
by class labels. In this way, we retain high visual contrast in
the off-diagonal cells, and facilitate navigating through the
matrix.

To let users assess the overall performance of individual
classes, we show temporal plots of false negatives for each
class in an additional column to the right, slightly offset
from the matrix. Likewise, an additional row at the bottom
shows the false positives for each class. We use the diagonal
element at the intersection of the additional row and column
to show the temporal progression of the overall accuracy of
the classifier(s). This allows the user to perform all analysis
tasks T1 to T6 on a global level (L1)—especially when this
chart is brought to the detail view (see Section 4.3).

To enable performance comparison between datasets

of different sizes (T4 to T6), such as training versus test
sets, ConfusionFlow includes an option to switch from
absolute to relative performance values. To obtain the relative
performance scores, the confusion counts are simply divided
by the total number of classified instances.

In order to address anomaly detection and comparison
tasks (T3 and T6), peak values for problematic pairs of
classes or training iterations should be visible and salient by
default. However, these particularly high confusion counts
can sometimes hide potentially interesting findings in other
cells. To address this issue, we let users toggle between linear
and logarithmic scales for the plots. Using an exponential
scaling slider, lower values can be further accentuated. In
the heatmap encoding, this corresponds to increasing the
contrast.

If users are only interested in a subset of the class
alphabet, they can narrow down the number of selected
classes in a class selection dialog. In order to maintain a
meaningful confusion matrix, a minimum of two classes
need to be selected at all times. The number of displayed
classes is not limited in terms of implementation, but there
are some practical limitations which we discuss in depth in
Section 5.2. Class aggregation is a second strategy to reduce
the number of displayed classes. This strategy is currently
not supported within ConfusionFlow and is only relevant
for datasets with a distinct class/superclass hierarchy.

In case of the CIFAR-10 example shown in Figure 3, the
ConfusionFlow matrix reveals that the confusion between
classes auto and truck is considerably higher for the CIFAR-
10.1 test set. Due to ConfusionFlow’s focus on temporal
analysis, it is immediately visible that this error is consistent
across all training epochs (cf. tasks T4 and T5). For all other
pairs of classes, the network generalizes well. In those
cells, this can be seen by the similar brightness values
for all three selected datasets. Without these class-level
observations, the reason for the decrease in overall accuracy
would remain unclear; by performing a comparative analysis
with ConfusionFlow, the performance decrease can be traced
back to changes in the underlying data distribution.

4.2 Class Performance & Distribution View

A thorough, class-level (L2) analysis of a classifier’s perfor-
mance should not only focus on pairs of classes, but also
include assessment of the general performance for individual
classes.

To this end, ConfusionFlow provides
temporal (G2) line charts of precision, recall,
and F1-score for all selected classes (see Fig-
ure 3.B). In contrast to the ConfusionFlow
matrix, horizontal space is not as limited for
these plots, and visual clutter is thus less of
an issue even in case of noisy data. For comparison between
multiple classifiers (G1b), we superimpose the line charts.
Again hue is used to differentiate between different classifier
results, and the hues are consistent with those chosen for
the ConfusionFlow matrix. To let users assess the size and
class distributions for each dataset, bar charts encode the
number of instances per class. The bars are placed next to the
per-class performance metrics and are colored consistently
with all other views. A mouseover action reveals the number
of instances for each bar.
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In case of the CIFAR example (Figure 3), the class
distribution charts reveal that the updated test set from
CIFAR-10.1 is considerably smaller than that from CIFAR-
10. The precision, recall, and F1-score charts confirm that
the recall for class auto and the precision for class truck
are particularly bad for the new test set, but they also
suggest that the classifier could not generalize well for plane
instances from CIFAR-10.1. This assessment of generalization
capabilities over multiple epochs is an example of task T5.
While the class performance charts can lead to interesting
insights on their own, they should also lead the user to
re-examining the ConfusionFlow matrix.

4.3 Detail View

All cells in the ConfusionFlow matrix, as well as all per-class
performance charts can be selected to be shown in greater
detail in a separate view (see Figure 3.C). We visualize the
temporal development of selected cells as line charts and
superimpose the curves for multiple classifiers, keeping the
hue for each model/configuration consistent. The detail view
particularly addresses the tasks of pin-pointed temporal
identification of problematic instances (T3 and T6) as well
as reading off and comparing numeric values (T1 and T4),
as space in the ConfusionFlow matrix is rather limited.
Upon loading a new performance dataset, by default the
overall (global) accuracy is shown in the detail view, as users
are accustomed to this plot from many other performance
analysis tools.

For the CIFAR example, the detail view confirms that—
for a typical iteration—the confusion value of interest (auto
vs. truck) is about twice as high for the updated CIFAR-10.1
test set than for the CIFAR-10 test and train sets.

4.4 Timeline

ConfusionFlow should aid
users in exploring the error
behaviour of classifiers at different temporal granularities,
involving single-time step tasks (T1 and T4) and multiple-
time-step tasks (T2, T3, T5, and T6). Moving from a temporally
rough to a more fine-grained analysis is facilitated by the
timeline shown in Figure 3.D.

By default, the whole range of available iterations is
selected upon loading performance data. Users can select a
subset of iterations by dragging the left and right boundaries
of the highlighted range in the timeline. All linked views,
such as the ConfusionFlow matrix or the detail view, are
updated automatically according to the selection. This range
selection corresponds to a temporal zoom-in.

To support users in locating and comparing values for a
specific time step across multiple views, they can additionally
select a single training step by clicking the iteration number
below the range selector. A black line in the timeline marks
the currently selected single iteration. The selected iteration
is then dynamically highlighted by a vertical marker in all
linked components. If the line chart encoding is selected for
the ConfusionFlow matrix, the background heatmap will
also be updated as described in Section 4.1.

In the CIFAR example from Figure 3, the performance
data spans 50 epochs. The user has selected an epoch range
covering epochs 0 to 42, and found an interesting peak for
the confusion auto vs. truck at epoch 22 in the detail view.

4.5 Dataset Selection

As stated above, a unique
hue is automatically as-
signed to each classification run upon loading the respective
performance data. An input field with dynamic drop-down
suggestions lets the user select from pre-loaded performance
data for a number of classification configurations (see Fig-
ure 3.E). After the user made the selection, the input field
serves as a legend for the visualization, representing each
run with a colored box.

ConfusionFlow is a model-agnostic visualization tech-
nique. This means that the kind of data on which Confusion-
Flow relies does not depend on the nature of the model.
During training, only the classifier output for each instance
needs to be logged after each iteration, and stored along
with the ground truth labels. Along with our prototype
implementation (see Section 4.6 below) we provide Python
code examples for logging and exporting data for the
commonly used ML frameworks TensorFlow and PyTorch.

In Figure 3, the input field serves as a legend to remind
the user that performance data for the training ( ) and test
set ( ) of CIFAR-10 [31], as well as the recently proposed
new test set ( ) from CIFAR-10.1 [43], have been loaded.

4.6 Implementation

ConfusionFlow is a server-client application based on the
Caleydo Phovea framework2 and the Flask framework3. The
server side is written in Python and the client side is written
in TypeScript using D3.js [11]. The code for ConfusionFlow—
including the logging tools mentioned above—is available
on GitHub4.

A deployed prototype of ConfusionFlow with several
pre-loaded example datasets is available online5.

5 EVALUATION

To evaluate the usefulness of ConfusionFlow we describe
three scenarios. First, we describe a case study which
we performed in collaboration with ML researchers. Our
collaborators used ConfusionFlow for visually comparing
labelling strategies in active learning. In a second evaluation
scenario, we analyze how ConfusionFlow scales to datasets
with many (& 10) classes. A third use case shows how
ConfusionFlow can be applied to study the effects of different
neural network pruning strategies.

5.1 Case Study: Effective Labeling in Active Learning

Labeled data is a prerequisite for supervised ML tasks.
The labeling process requires human supervision to attach
semantics to data instances. The challenge addressed in this
case study refers to the instance selection problem: which
instance should be selected next for labeling, in order to
(a) improve a classifier most effectively, and (b) keep the
effort of human labelers at a minimum?

Within the field of active learning [46], Visual-Interactive
Labeling (VIAL) [10] is a concept to combine the strengths

2. Caleydo Phovea: https://github.com/phovea
3. Flask: http://flask.pocoo.org
4. https://github.com/ConfusionFlow/confusionflow
5. Prototype: https://confusionflow.caleydoapp.org

https://github.com/phovea/
http://flask.pocoo.org/
https://github.com/ConfusionFlow/confusionflow
https://confusionflow.caleydoapp.org/
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Fig. 5. Visual comparison of instance selection strategies for effective data labeling. In an experiment, our collaborators tested three different labeling
strategies: Greedy ( ), Smallest Margin ( ), and Dense Areas First ( ). Using ConfusionFlow, our collaborators made a series of findings regarding
the overall performances (A, D1, D2) as well as the temporal progression of class confusions (B, C, D3) for the different strategies.

of humans and algorithmic models to facilitate effective
instance selection. To this end, VIAL combines active learning
with visual-interactive interfaces which enable humans to
explore and select instances [8].

One model-based active learning strategy used in this
study is Smallest Margin [59], which always selects the
remaining unlabeled instances with the highest classifier
uncertainty. In contrast, one instance selection strategy
frequently applied by humans is Dense Areas First, reflecting
the idea that humans tend to select instances in the dense
areas of the data [9].

Our collaborators aim at making the labeling process
a more effective, efficient, and human-friendly endeavor.
Given that recent experiments confirmed that human-based
strategies and model-centered strategies have complemen-
tary strengths [9], our collaborators are interested in further
analyzing the differences between strategies.

ConfusionFlow allows our collaborators to compare the
model-based Smallest Margin with the human-based Dense
Areas First strategy. As a third strategy, a Greedy algorithm
based on ground truth information serves as the theoretical
upper-limit of performance. For their analyses, our collab-
orators chose the MNIST handwritten digits dataset [33]
as an intuitive and well-established dataset that does not
require domain knowledge. Another advantage of MNIST
over other datasets is the ability of users to label most
instances unambiguously.

Our collaborators use ConfusionFlow’s temporal analysis
capability to analyze and compare the labeling process
over time. Accordingly, each training epoch corresponds
to one labeling iteration (consisting of instances selection,
labeling, and model re-training). Figure 5 shows how the
collaborators compared the labeling processes of the three

strategies visually (Smallest Margin, Dense Areas First, and
Greedy).

The primary comparison goal (G1) of our collabora-
tors is between models, accompanied by more detailed
analyses of individual within-model characteristics. Due to
the exploratory nature of the analysis, all three temporal
analysis goals (G2) are relevant. As a result, the information
requirements of our collaborators include all six analysis
tasks (T1 to T6, see Table 1).

The Greedy strategy (Figure 5, ) shows a steep perfor-
mance increase (T2) at the beginning (A1), leading to more
than 50 percent accuracy after only 10 iterations (T1). As the
theoretical upper performance limit, Greedy has the strongest
upward trend compared to the other strategies. It converges
earlier (T5) and at the highest level of accuracy (T4). With
only 50 labels the Greedy strategy already achieves almost
80 percent accuracy (T1).

Our collaborators also identified a known anomaly pat-
tern in the accuracy curve (T3), which happens after ten
instances (i.e., when all labels have been visited exactly
once; see Figure 5.A2). This pattern is unique to the Greedy
strategy (T6): with the eleventh label the training set becomes
unbalanced, leading to a significant temporal decrease of
classification accuracy. With ConfusionFlow, our collabo-
rators could relate this anomaly to increased confusions
between the classes 0, 4, and 9 (T4). Future repetitions of the
experiment will clarify whether this effect can be related to
the semantics of the particular classes or can be explained by
other influencing factors.

The Smallest Margin strategy (Figure 5, ) starts with a
short and very early peak (instances 3 to 6) (T3) a pattern
that the other two strategies do not show (T6). Thereafter, an
almost linear upwards trend continues until instance 50 (T2),
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where the Margin strategy has almost 60 percent accu-
racy (T1).

In the ConfusionFlow matrix, our collaborators identified
considerably high confusion values of class 8 (T1) with almost
any remaining class (Figure 5.B1). This poor performance
for class 8 is also clearly visible in the precision curve. An
interesting pattern was the significant decrease of confusion
between classes 0 vs. 8, roughly beginning at the 35th time
step (B2). It seems that sometimes a single labeled instance
can make a difference and support the accuracy of a classifier.
Additionally, up to around instance 50, confusion values for
class 2 are relatively high (T3), leading to many false positives
for this class (B3).

The Dense Areas First strategy (Figure 5, ) exhibits a
minor but steady increase in the early phase of the labeling
process (T2). After 50 labels, the strategy achieves almost
55 percent accuracy T1. At a glance, Dense Areas First and
Smallest Margin have similar overall accuracy curves (T5).

By inspecting the ConfusionFlow matrix, the analysts
gained a series of different insights. Some class confusions
lasted for the entire labeling process (T2) (1 vs. 3, 5 vs. 3,
2 vs. 6; see Figure 5.C1). Conversely, some class confusions
seemed to have different levels of intensity during the
labeling process (T2) (2 vs. 4, 7 vs. 4, 9 vs. 4). One class
confusion even increased during the process (T2) (7 vs. 9),
visible both in the matrix and in the FP chart (C2). Some
training steps introduced peaks of confusion (T3) (class 6,
roughly at instance 10). Finally, some classes did not suffer
from considerable confusions at all (0, 1, 5, and 7).

One of the most interesting findings—according to our
collaborators—was that the confusion patters for some pairs
of classes differed considerably over time and between
strategies. In case of the classes 9 vs. 4, for example, the
confusions of the model-based Smallest Margin and the
human-based Dense Areas First strategy show a strongly
contrasting behavior (see Figure 5.D3). This observation
strengthens our collaborators’ view that strategies have
complementary strengths.

As a result of their analysis with ConfusionFlow, our
collaborators are motivated to perform in-depth follow-up
analyses. They are particularly interested in using their class-
level insights (L2) gained with ConfusionFlow as a starting
point for drilling down to the instance level (L3). This way,
they will be able to confirm general class-related patterns or
trace back performance changes to individual images.

5.2 Use Case: Scalability to Many Classes

The traditional confusion matrix—as a class-level aggregation
technique—scales well to large datasets with many instances.
However, the confusion matrix organizes the inter-class con-
fusion counts across all pairs of dataset classes, so datasets with
more classes result in larger confusion matrices. Doubling
the number of classes in a dataset reduces the available area
for each cell in the confusion matrix by a factor of four.

The ConfusionFlow visualization idiom inherits these
scalability issues from the traditional confusion matrix. In
its current implementation, ConfusionFlow works well for
classification problems with up to around fifteen classes.
This is sufficient to support the majority of freely avail-

able datasets for multiclass classification6: a query on
www.openml.org [54] in February 2020 reveals that out of 434
datasets for multiclass classification problems, 368 datasets
have fewer than 15 classes.

Still, given the popularity of certain benchmark datasets
for image classification with higher numbers of classes—
such as ImageNet [15] (1000 classes), Caltech 101 [17] and
256 [23] (101 and 256 classes, resp.), and CIFAR-100 [31] (100
classes)—it is worth evaluating ConfusionFlow’s scalability.

To this end, we assess the characteristics of the Confusion-
Flow matrix in the context of two class reduction strategies,
class selection and class aggregation (cf. Section 4.1), when
applied to an image classifier trained on the CIFAR-100
dataset.

The one hundred classes of CIFAR-100 are semantically
divided into twenty superclasses. Each superclass groups five
classes, e.g., the classes fox, porcupine, possum, raccoon, and
skunk together make up the superclass medium-sized mammals.
We chose this dataset as it already includes a proposed
class aggregation scheme, making it suitable for an unbiased
comparison between the two approaches for reducing the
dimensions of the confusion matrix.

We trained a simple convolutional neural network to
classify images from the CIFAR-100 dataset into one of the
100 classes, logging confusion data for 100 epochs. After
each epoch, we evaluated the network’s performance on
the train fold as well as the test fold of the whole dataset.
We determined superclass confusion values from the class
predictions.

We studied class selection based on two different selection
criteria: F1 scores and off-diagonal confusion matrix entries.
We first selected the ten classes with the lowest F1-scores on
the test set in the last epoch. Among these classes were
many representing furry, brown or grey animals (bear, otter,
rabbit, kangaroo, and seal).

In the ConfusionFlow matrix, we saw that these classes
were frequently confused with each other (see Figure S-4
in the Supplementary Information). The remaining classes
with low F1-score were related to images of young humans
(i.e., boy, girl, and baby). ConfusionFlow’s rescaling functions
helped to show that the confusion values for these three
human-related classes are much higher than for the animal
classes. This means that the poor performance for animals
is spread out over many more classes than in the case of
humans, as the final F1-scores were similarly bad for all
classes (T1).

While these findings could have been made without look-
ing at temporal data, ConfusionFlow reveals that all these
classes suffer from severe overfitting (T4). This overfitting
was apparent in the precision, recall, and F1-score plots of all
classes as well as in the overall accuracy (see Figure S-2 in
the Supplementary Information).

However, we could not find particular pairs of classes in
this submatrix for which the confusion score got significantly
worse over the course of training as a result of the overfitting.
Using only this class selection mechanism, we could not
assess whether overfitting was a general issue or affected
certain pairs of classes more severely than others.

6. In principle, ConfusionFlow can also be applied to binary classifica-
tion tasks, but the analysis of binary classifiers does not benefit much
from ConfusionFlow’s focus on the class level (L2).

www.openml.org
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We thus moved on to evaluate a second class selection
mechanism. We searched for the ten largest off-diagonal
values in the confusion matrix for the test set and for the
final training epoch. In the pairs of classes describing these
cells, 14 classes were represented (see Figure S-5 in the
Supplementary Information). Among these 14 classes are
three different types of trees and four different types of
flowers. The classes boy and girl are part of the list again,
which matched our previous findings. The temporal aspect
of ConfusionFlow reveals that the performance of the tree-
related classes does not suffer as badly from overfitting as
most other classes (T5).

Had we not chosen the CIFAR-100 dataset for its su-
perclass structure, these results from the class selection
strategy would have hinted strongly at the presence of a
class hierarchy. While ConfusionFlow was not designed
specifically for analyzing class hierarchies, it can help to
build some intuition about their possible existence.

We resumed our evaluation by looking at the Confusion-
Flow matrix for all 20 superclasses (see Figure S-3 in the
Supplementary Information). We realized from the precision,
recall, and F1-charts that the performance on the test set
for all superclasses except for trees gets worse compared
to the performance on the training set (T5). This is in line
with the results for the individual tree classes. It seems that
the network has such a hard time to distinguish between
different types of trees, that it is not capable of overfitting.
From looking exclusively at the superclass confusion matrix,
it would seem like this is an advantage, but obviously this
behavior is only caused by generally high confusion within
the superclass.

There are some superclass pairings that have large confu-
sion values between superclasseswith temporal characteristics
that hint at overfitting problems. In particular, confusion
values for the two vehicle classes vehicles 1 and vehicles 2
increase over time (T5).

With the insights gained from the class aggregation we
could now go back and explore the fine grained classes again.
We looked at the ten classes making up the superclasses
vehicles 1 (bicycle, bus, motorcycle, pickup truck, and train) and
vehicles 2 (lawn-mower, rocket, streetcar, tank, and tractor). The
ConfusionFlow visualization for these ten classes is shown in
Figure 6. The confusion values for the pairs of classes within
vehicles 1 are generally much higher than those for pairs of
classes within vehicles 2 and pairs of classes across the two
superclasses. A strong exception to this rule is class pairings
featuring the streetcar class (see Figure 6.A), which hints at
a flawed definition of superclasses. It seems appropriate to
swap the superclass memberships of train and streetcar.

Again, the temporal aspect of ConfusionFlow was helpful
in assessing problems caused by overfitting. In particular,
the performance of tractor gets worse over time (T5), which
is most likely related to confusion with train and tank (see
Figure 6.B. Interestingly, while the network is generally good
at distinguishing rockets from other vehicles, too long training
causes some tractor and bus images to be classified as rockets
(Figure 6.C). These temporal anomalies (T3) would have
been hard to detect from a single “snapshot” of the sparse
confusion matrix.

Fig. 6. ConfusionFlow matrix for the ten classes making up the vehicle 1
and vehicle 2 superclasses for the train ( ) and test folds ( ) of CIFAR-
100. Streetcar is more often confused with bus than with classes from
its own vehicle superclass (a). Performance for tractor images suffers
particularly from overfitting (b). Unsurprisingly, rocket seems to be hardly
confused with any other vehicle (c), even though too long training causes
some tractors and buses to be misclassified as rockets.

5.3 Use Case: Neural Network Pruning

Neural networks are often heavily over-parameterized and
contain millions of weights whose values are irrelevant for
the network’s performance. One technique for removing re-
dundant parameters from a neural network is called pruning.
During learning, connections in the network are successively
removed (pruned) according to different selection strategies.
Successful pruning results in a compressed model that retains
its accuracy while requiring fewer computations and less
memory. This facilitates deployment in embedded systems
[24] and sometimes even leads to faster learning and better
generalization than the initial dense model [18], [35].

We examined the performance of several fully connected
networks with different architectures trained on the Fashion-
MNIST dataset [60]. This dataset consists of grey-scale images
of fashion objects organized in 10 classes (trouser, pullover,
sandal, etc.). Specifically, we investigated the effects of prun-
ing a neural network and re-initializing the resulting sparse
network with the initial weights as described by Frankle and
Carbin [18]. Using ConfusionFlow’s temporal-comparative
analysis features, we tried to get a better understanding of
how removing certain weights affects the model’s ability to
distinguish between classes.

Figure 7 shows the ConfusionFlow visualization for
three different networks trained on the Fashion-MNIST
dataset. The original network ( ) had 6-layers, each with 200
hidden units and ReLU activation functions. The learning
rate was 0.012, with a batch size of 60. In the second net-
work ( ), 20 percent of the connections were removed at each
epoch (this approach is called online pruning). The sparse
network resulting after 15 epochs was then re-initialized
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Fig. 7. Visual comparison of different neural network pruning strategies. An original network ( ), a pruned network ( ), and a re-initialized sparse
network ( ) were trained to classify Fashion-MNIST images. ConfusionFlow reveals how the accuracy drop after 10 to 14 epochs (A) relates to
confusions for different pairs of classes (B–D). The learning behavior of the re-initialized sparse network is much more stable compared to that of the
other two models.

with the same weights as the original dense network, and re-
trained from scratch ( ). In this network less than 4 percent
of the original connections remain.

It is immediately obvious from the overall accuracy plot
(Figure 7.A) that the training of the original model ( ) fails
completely after 10 epochs (T3). Training of the online-pruned
network ( ) fails slightly later (T6). The performance of the
re-initialized sparse network ( ), however, remains high.
Remarkably, it even performs better than the other two
networks right from the start (T5). ConfusionFlow allows
relating this global (L1) accuracy improvement to pairwise
class confusions.

Inspection of the ConfusionFlow matrix shows that the
confusion counts for all shoe-related pairs of classes (sneaker
vs. sandal, ankle boot vs. sneaker, etc.) increase considerably
during later epochs for the non-pruned and online-pruned
networks (Figure 7.B). The re-initialized sparse network,
on the other hand, continues to learn to better distinguish
between these classes (T5). Another reason for the complete
failure of the original network seems to be related to the
classes trouser and coat (see Figure 7.C), with extremely high
FP values for these two classes in two of the later epochs (T6).

Even though the global accuracy plot showed a pro-
nounced accuracy drop for the non-pruned and the online-
pruned networks, both models retain an accuracy of about
30 percent (T1). The ConfusionFlow matrix reveals that this
remaining accuracy in the later epochs is related to a better
performance for the pairs shirt vs. T-shirt/top and pullover
vs. shirt (Figure 7.D). The better generalization of the re-
initialized sparse network across other classes comes at the
cost of higher confusion values for images showing different
kinds of upper body garments.

These findings demonstrate that ConfusionFlow allows a
more nuanced evaluation of classifier performance, enabling
the user to trace accuracy changes back to the class level.

5.4 Summary & Discussion of Findings

Visual Design

Our collaborators found ConfusionFlow easy to use and
appreciated that its visual design incorporated two visu-
alization idioms that they were already acquainted with:
the confusion matrix and temporal line charts. The familiar
layout of the confusion matrix along with the consistent
color-coding of models helped our collaborators to navigate
their analysis through the information-rich display. They
mentioned, however, that in the case of more classes or
more models they would welcome additional focus + context
capabilities, perhaps similar to those provided by tools such
as LiveRAC [37].

Comparative & Temporal Analysis on the Class Level

The different scenarios in our case study on active learning
and our scalability evaluation revealed a general strength of
the combined temporal and comparative analysis capabilities
(G1 + G2) in ConfusionFlow, in particular with regards to the
class level (L2). As classifiers learn, the off-diagonal elements
of the confusion matrix tend to get sparse. Temporally
fine-grained learning—such as model updates after each
minibatch or even after individual instance, as is the case
in active learning—can result in confusion matrices of final
classifiers that may not be representative of general patterns.
Our collaborators appreciated ConfusionFlow’s temporal-
comparative approach, as it enabled them to identify tem-
porally stable patterns. We found the same aspect useful in
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our scalability study, where the high number of classes leads
to particularly sparse matrices. Furthermore, looking at the
class level reveals how likely the model is to fluctuate. Global-
level performance measures tend to hide this susceptibility of
models to random or systematic changes during the training,
as they average over all classes.

Scalability

Our scalability study with the CIFAR-100 dataset showed
that ConfusionFlow can be used to analyze up to about 20
classes, although for more than 15 classes, screen resolution
and label placement start to become limiting factors. It
was still possible to derive insights from the 20-superclass
confusion matrix, which could be used downstream in a
subsequent class-level analysis.

Bidirectional Analysis

Typically, users apply ConfusionFlow after they already
went through a reasoning process about a model’s potential
usefulness. With enough prior knowledge about the mo-
tivations behind the initial models, insights gained with
ConfusionFlow can be directly used to “go back” and
optimize these models—resulting in a bidirectional analysis
and development workflow.

However, in most cases true bidirectionality requires
further tools. The three scenarios presented in this section
showed that the specific requirements for a holistic analysis
are domain-specific and/or model-specific (keep in mind
that ConfusionFlow is fully model-agnostic). Additionally, in
some cases instance-level information (L3) is required.

After discussion with our collaborators, we see Confusion-
Flow as one step in a bidirectional, iterative analysis work-
flow. We see its main strength in that it provides temporal and
comparative insights which can serve as additional mental
inputs for a more application-specific analysis. Examples of
tools that could be used in conjunction with ConfusionFlow
are LIME [45] for instance-based explanations and Blocks by
Allsalakh et al. [4] for exploring class hierarchies. Section 6.1
gives an outlook on how we plan to develop a temporal
instance-level visualization that will serve as an analysis
springboard similar to ConfusionFlow. Our collaborators
showed particular interest in such an instance-level tool for
further continuing their analysis of selection strategies based
on insights gained with ConfusionFlow.

6 FUTURE WORK

6.1 Instance-Level Analysis

Since ConfusionFlow was specifically designed to visualize
class-level information (L2), it does not enable instance-level
analysis (L3). However, exploring the learning dynamics at
the level of instances would help users to discover labeling
errors or outlier instances that might otherwise go unnoticed.

We are currently working on InstanceFlow, a visualization
tool for addressing these issues. InstanceFlow will visualize
the classification progression of individual instances through-
out the training in a Sankey-like fashion. It will allow users
to filter instances by certain metrics, such as the frequency of
“hopping” between classes.

Especially for neural network classifiers, linking this
instance-level class-confusion to a feature-based detail view

could further improve the understanding of the learning
behavior. Depending on the supported model architectures,
this detail view could build upon previous work by Olah et
al. [41] or work regarding activation visualization [28], [42].

6.2 Multi-Label Classification

Multi-label classification is an ML problem, in which mul-
tiple class labels can be assigned to instances. In principle,
ConfusionFlow can be extended to visualize the confusion
of multi-label classifiers, by using combinations of class
labels instead of single classes along each of the matrix axes.
However, since the number of possible combinations grows
quickly with the number of overall classes, aggregation
methods would need to be incorporated in the workflow.
Alternatively, the ConfusionFlow technique could be paired
with instance selection strategies to visualize instance-wise
multilabel confusion matrices.

7 CONCLUSION

In this paper we introduced ConfusionFlow, a novel tool
for visualizing and exploring the temporal progression of
classifier confusion. ConfusionFlow combines a visualization
of the confusion matrix over time with charts for global and
per-class performance metrics. We evaluated the usefulness
of ConfusionFlow’s interactive exploration capabilities by
means of a case study on instance selection strategies in
active learning. Furthermore, we analyzed ConfusionFlow’s
scalability and presented a use case in the context of neural
network pruning.

ConfusionFlow was not designed as a catch-all, stan-
dalone tool, but to be used in conjunction with other tools
and visualization components. In particular, we plan to
complement ConfusionFlow’s class-level information with
a novel visualization tool focused on temporal observation
of instance-level confusion. However, offering model com-
parison and temporal training analysis at the class level,
ConfusionFlow can fill an important gap in an ML work-
flow towards understanding and interpreting classification
models.
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