19 research outputs found

    Is synesthesia more common in patients with Asperger syndrome?

    Get PDF
    There is increasing evidence from case reports that synesthesia is more common in individuals with autism spectrum conditions (ASC). Further, genes related to synesthesia have also been found to be linked to ASC and, similar to synaesthetes, individuals with ASC show altered brain connectivity and unusual brain activation during sensory processing. However, up to now a systematic investigation of whether synesthesia is more common in ASC patients is missing. The aim of the current pilot study was to test this hypothesis by investigating a group of patients diagnosed with Asperger Syndrome (AS) using questionnaires and standard consistency tests in order to classify them as grapheme-color synaesthetes. The results indicate that there are indeed many more grapheme-color synaesthetes among AS patients. This finding is discussed in relation to different theories regarding the development of synesthesia as well as altered sensory processing in autism

    Neuronal correlates of ADHD in adults with evidence for compensation strategies – a functional MRI study with a Go/No-Go paradigm

    Get PDF
    Objective: Response inhibition impairment is one of the most characteristic symptoms of attention-deficit/hyperactivity disorder (ADHD). Thus functional magnetic resonance imaging (fMRI) during a Go/No-Go task seems to be an ideal tool for examining neuronal correlates of inhibitory control deficits in ADHD. Prior studies have shown frontostriatal abnormalities in children and adolescents. The aim of our study was to investigate whether adults with ADHD would still show abnormal brain activation in prefrontal brain regions during motor response inhibition tasks

    Prefrontal and anterior cingulate cortex abnormalities in Tourette Syndrome: evidence from voxel-based morphometry and magnetization transfer imaging

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Pathophysiological evidence suggests an involvement of fronto-striatal circuits in Tourette syndrome (TS). To identify TS related abnormalities in gray and white matter we used optimized voxel-based morphometry (VBM) and magnetization transfer imaging (MTI) which are more sensitive to tissue alterations than conventional MRI and provide a quantitative measure of macrostructural integrity.</p> <p>Methods</p> <p>Volumetric high-resolution anatomical T1-weighted MRI and MTI were acquired in 19 adult, unmedicated male TS patients without co-morbidities and 20 age- and sex-matched controls on a 1.5 Tesla neuro-optimized GE scanner. Images were pre-processed and analyzed using an optimized version of VBM in SPM2.</p> <p>Results</p> <p>Using VBM, TS patients showed significant decreases in gray matter volumes in prefrontal areas, the anterior cingulate gyrus, sensorimotor areas, left caudate nucleus and left postcentral gyrus. Decreases in white matter volumes were detected in the right inferior frontal gyrus, the left superior frontal gyrus and the anterior corpus callosum. Increases were found in the left middle frontal gyrus and left sensorimotor areas. In MTI, white matter reductions were seen in the right medial frontal gyrus, the inferior frontal gyrus bilaterally and the right cingulate gyrus. Tic severity was negatively correlated with orbitofrontal structures, the right cingulate gyrus and parts of the parietal-temporal-occipital association cortex bilaterally.</p> <p>Conclusion</p> <p>Our MRI <it>in vivo </it>neuropathological findings using two sensitive and unbiased techniques support the hypothesis that alterations in frontostriatal circuitries underlie TS pathology. We suggest that anomalous frontal lobe association and projection fiber bundles cause disinhibition of the cingulate gyrus and abnormal basal ganglia function.</p

    Künstliche Sinne für Roboter

    No full text
    Ritter H. Künstliche Sinne für Roboter. In: Ganten D, Emrich HM, eds. Gene, Neurone, Qubits &amp; Co. : unsere Welten der Information, 19.-22. September 1998, Berlin. Verhandlungen der Gesellschaft Deutscher Naturforscher und Ärzte e.V : .. Versammlung Gesellschaft Deutscher Naturforscher und Ärzte. Stuttgart: Hirzel; 1999: 303-310

    Glia in the cytokine-mediated onset of depression:Fine tuning the immune response

    No full text
    Major depressive disorder (MDD) is a mood disorder of multifactorial origin affecting millions of people worldwide. The alarming estimated rates of prevalence and relapse make it a global public health concern. Moreover, the current setback of available antidepressants in the clinical setting is discouraging. Therefore, efforts to eradicate depression should be directed towards understanding the pathomechanisms involved in the hope of finding cost-effective treatment alternatives. The pathophysiology of MDD comprises the breakdown of different pathways, including the hypothalamus-pituitary-adrenal axis, the glutamatergic system, and monoaminergic neurotransmission, affecting cognition and emotional behavior. Inflammatory cytokines have been postulated to be the possible link and culprit in the disruption of these systems. In addition, evidence from different studies suggests that impairment of glial functions appears to be a major contributor as well. Thus, the intricate role between glia, namely microglia and astrocytes, and the central nervous system’s immune response is briefly discussed, highlighting the kynurenine pathway as a pivotal player. Moreover, evaluations of different treatment strategies targeting the inflammatory response are considered. The immuno-modulatory properties of vitamin D receptor (VDR) suggest that vitamin D is an attractive and plausible candidate in spite of controversial findings. Further research investigating the role of VDR in mood disorders is warranted
    corecore