383 research outputs found

    3D Integrated Micro-solution Plasma for The Treatment of Water - Effects of Discharge Gases -

    Get PDF
    Methylene blue molecules in aqueous solution have been decomposed by using a novel 3D integratedmicro-solution plasma reactor operated with Ar and He gases. Energy efficiency for methylene-blue decompositionin the case of Ar is relatively higher than that in the case of He. This result suggests thatcheaper Ar gas has brought about superior performance in water purification. In both cases of Ar and He,methylene-blue decomposition efficiency is one order of magnitude higher than that of conventional solutionplasma

    Directed motion of domain walls in biaxial ferromagnets under the influence of periodic external magnetic fields

    Full text link
    Directed motion of domain walls (DWs) in a classical biaxial ferromagnet placed under the influence of periodic unbiased external magnetic fields is investigated. Using the symmetry approach developed in this article the necessary conditions for the directed DW motion are found. This motion turns out to be possible if the magnetic field is applied along the most easy axis. The symmetry approach prohibits the directed DW motion if the magnetic field is applied along any of the hard axes. With the help of the soliton perturbation theory and numerical simulations, the average DW velocity as a function of different system parameters such as damping constant, amplitude, and frequency of the external field, is computed.Comment: Added references, corrected typos, extended introductio

    A novel animal model for subcutaneous soft tissue infection using temporally neutropenic lys-EGFP mice

    Get PDF
    Neutrophils play an important role against bacterial infection, mainly methicillin resistant Staphylococcus aureus (MRSA). Therefore, we developed an animal model to simultaneously monitor bacterial colonization and neutrophil migration in vivo. Using lys-EGFP C57BL/6 mice, we initially rendered the mice temporally neutropenic using cyclophosphamide (CPM) treatment (300mg/kg or 375mg/kg). Later, bioluminescent MRSA (Xen31, PerkinElmer) were subcutaneously injected (1.0×107 CFU) into the dorsal skin of the neutropenic lys-EGFP mice. The mice were then administered either saline (control group), or vancomycin (66mg/kg, treated group) consecutively for three days. For the evaluation of MRSA activity and neutrophil accumulation, an in vivo imaging system (LAS-4000, GE) was performed. Our results demonstrated that vancomycin is capable of killing bacterial cells and it also promotes inflammation. In addition, the rate of neutrophil regeneration after being suppressed by CPM is dependent on the dose of CPM. We could conclude that vancomycin is capable of inducing inflammation but the effects of the drug could only be observed if the immune system is adequately suppressed

    Direct Comparison of Manganese Detoxification/Efflux Proteins and Molecular Characterization of ZnT10 as a Manganese Transporter

    Get PDF
    Manganese (Mn) homeostasis involves coordinated regulation of specific proteins involved in Mn influx and efflux. However, the proteins that are involved in detoxification/efflux have not been completely resolved, nor has the basis by which they select their metal substrate. Here, we compared six proteins, which were reported to be involved in Mn detoxification/efflux, by evaluating their ability to reduce Mn toxicity in chicken DT40 cells, finding that human ZnT10 (hZnT10) was the most significant contributor. A domain swapping and substitution analysis between hZnT10 and a zinc-specific transporter hZnT1 showed that residue N43, which corresponds to the His residue constituting the potential intramembranous zinc coordination site in other ZnT transporters, is necessary to impart hZnT10's unique Mn mobilization activity; residues C52 and L242 in transmembrane domains II and V play a subtler role in controlling the metal specificity of hZnT10. Interestingly, the H->N reversion mutant in hZnT1 conferred Mn transport activity and loss of zinc transport activity. These results provide important information about Mn detoxification/efflux mechanisms in vertebrate cells as well as the molecular characterization of hZnT10 as a Mn transporter

    Temperature-insensitive UV-induced Bragg gratings in silica-based planar lightwave circuits on Si

    Get PDF
    A novel technique is proposed to realise temperature-insensitive Bragg gratings in silica-based lightwave circuits on Si using a bimetal plate. A wavelength shift < 0.15nm is successfully demonstrated between -40 and 80°C in the Bragg gratings written in a Mach-Zehnder interferometer

    Drugs developed to treat diabetes, liraglutide and lixisenatide, cross the blood brain barrier and enhance neurogenesis

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Type 2 diabetes is a risk factor for Alzheimer's disease (AD), most likely linked to an impairment of insulin signalling in the brain. Therefore, drugs that enhance insulin signalling may have therapeutic potential for AD. Liraglutide (Victoza) and exenatide (Byetta) are novel long-lasting analogues of the GLP-1 incretin hormone and are currently available to treat diabetes. They facilitate insulin signalling via the GLP-1 receptor (GLP-1R). Numerous <it>in vitro </it>and <it>in vivo </it>studies have shown that GLP-1 analogues have a range of neuroprotective properties. GLP-1Rs are expressed in the hippocampal area of the brain an important site of adult neurogenesis and maintenance of cognition and memory formation. Therefore, if GLP-1 analogues can cross the blood brain barrier, diffuse through the brain to reach the receptors and most importantly activate them, their neuroprotective effects may be realized.</p> <p>Results</p> <p>In the present study we profiled the GLP-1 receptor agonists liraglutide (Victoza) and lixisenatide (Lyxumia). We measured the kinetics of crossing the blood brain barrier (BBB), activation of the GLP-1R by measuring cAMP levels, and physiological effects in the brain on neuronal stem cell proliferation and neurogenesis. Both drugs were able to cross the BBB. Lixisenatide crossed the BBB at all doses tested (2.5, 25, or 250 nmol/kg bw ip.) when measured 30 min post-injection and at 2.5-25 nmol/kg bw ip. 3 h post-injection. Lixisenatide also enhanced neurogenesis in the brain. Liraglutide crossed the BBB at 25 and 250 nmol/kg ip. but no increase was detectable at 2.5 nmol/kg ip. 30 min post-injection, and at 250 nmol/kg ip. at 3 h post-injection. Liraglutide and lixisenatide enhanced cAMP levels in the brain, with lixisenatide being more effective.</p> <p>Conclusions</p> <p>Our results suggest that these novel incretin analogues cross the BBB and show physiological activity and neurogenesis in the brain, which may be of use as a treatment of neurodegenerative diseases.</p

    Transverse Domain Wall Profile for Spin Logic Applications

    Get PDF
    Domain wall (DW) based logic and memory devices require precise control and manipulation of DW in nanowire conduits. The topological defects of Transverse DWs (TDW) are of paramount importance as regards to the deterministic pinning and movement of DW within complex networks of conduits. In-situ control of the DW topological defects in nanowire conduits may pave the way for novel DW logic applications. In this work, we present a geometrical modulation along a nanowire conduit, which allows for the topological rectification/inversion of TDW in nanowires. This is achieved by exploiting the controlled relaxation of the TDW within an angled rectangle. Direct evidence of the logical operation is obtained via magnetic force microscopy measurement

    Total and High Molecular Weight Adiponectin and Hepatocellular Carcinoma with HCV Infection

    Get PDF
    Adiponectin is shown to be inversely associated with development and progression of various cancers. We evaluated whether adiponectin level was associated with the prevalence and histological grade of hepatocellular carcinoma (HCC), and liver fibrosis in patients with hepatitis C virus (HCV) infection.A case-control study was conducted on 97 HCC patients (cases) and 97 patients (controls) matched for sex, Child-Pugh grade and platelet count in patients with HCV infection. The serum total and high molecular weight (HMW) adiponectin levels were measured by enzyme-linked immunosorbent assays and examined in their association with the prevalence of HCC. In addition, the relationship between these adiponectin levels and body mass index (BMI), progression of liver fibrosis, and histological grade of HCC was also evaluated. Liver fibrosis was assessed using the aspartate aminotransferase to platelet ratio index (APRI).There were no significant differences in the serum total and HMW adiponectin levels between cases and controls. Moreover, there were no inverse associations between serum total and HMW adiponectin levels and BMI in both cases and controls. On the other hand, serum total and HMW adiponectin levels are positively correlated with APRI in both cases (r = 0.491, P<0.001 and r = 0.485, P<0.001, respectively) and controls (r = 0.482, P<0.001 and r = 0.476, P<0.001, respectively). Interestingly, lower serum total (OR 11.76, 95% CI: 2.97–46.66 [P<0.001]) and HMW (OR 10.24, CI: 2.80–37.40 [P<0.001] adiponectin levels were independent risk factors of worse histological grade of HCC.Our results suggested that serum total and HMW adiponectin levels were predictors of liver fibrosis, but not prevalence of HCC in patients with HCV infection. Moreover, low these adiponectin levels were significantly associated with worse histological grades

    Deciphering the Catalytic Machinery in 30S Ribosome Assembly GTPase YqeH

    Get PDF
    YqeH, a circularly permuted GTPase (cpGTPase), which is conserved across bacteria and eukaryotes including humans is important for the maturation of small (30S) ribosomal subunit in Bacillus subtilis. Recently, we have shown that it binds 30S in a GTP/GDP dependent fashion. However, the catalytic machinery employed to hydrolyze GTP is not recognized for any of the cpGTPases, including YqeH. This is because they possess a hydrophobic substitution in place of a catalytic glutamine (present in Ras-like GTPases). Such GTPases were categorized as HAS-GTPases and were proposed to follow a catalytic mechanism, different from the Ras-like proteins.MnmE, another HAS-GTPase, but not circularly permuted, utilizes a potassium ion and water mediated interactions to drive GTP hydrolysis. Though the G-domain of MnmE and YqeH share only approximately 25% sequence identity, the conservation of characteristic sequence motifs between them prompted us to probe GTP hydrolysis machinery in YqeH, by employing homology modeling in conjunction with biochemical experiments. Here, we show that YqeH too, uses a potassium ion to drive GTP hydrolysis and stabilize the transition state. However, unlike MnmE, it does not dimerize in the transition state, suggesting alternative ways to stabilize switches I and II. Furthermore, we identify a potential catalytic residue in Asp-57, whose recognition, in the absence of structural information, was non-trivial due to the circular permutation in YqeH. Interestingly, when compared with MnmE, helix alpha2 that presents Asp-57 is relocated towards the N-terminus in YqeH. An analysis of the YqeH homology model, suggests that despite such relocation, Asp-57 may facilitate water mediated catalysis, similarly as the catalytic Glu-282 of MnmE. Indeed, an abolished catalysis by D57I mutant supports this inference.An uncommon means to achieve GTP hydrolysis utilizing a K(+) ion has so far been demonstrated only for MnmE. Here, we show that YqeH also utilizes a similar mechanism. While the catalytic machinery is similar in both, mechanistic differences may arise based on the way they are deployed. It appears that K(+) driven mechanism emerges as an alternative theme to stabilize the transition state and hydrolyze GTP in a subset of GTPases, such as the HAS-GTPases

    Dramatic Transcriptional Changes in an Intracellular Parasite Enable Host Switching between Plant and Insect

    Get PDF
    Phytoplasmas are bacterial plant pathogens that have devastating effects on the yields of crops and plants worldwide. They are intracellular parasites of both plants and insects, and are spread among plants by insects. How phytoplasmas can adapt to two diverse environments is of considerable interest; however, the mechanisms enabling the “host switching” between plant and insect hosts are poorly understood. Here, we report that phytoplasmas dramatically alter their gene expression in response to “host switching” between plant and insect. We performed a detailed characterization of the dramatic change that occurs in the gene expression profile of Candidatus Phytoplasma asteris OY-M strain (approximately 33% of the genes change) upon host switching between plant and insect. The phytoplasma may use transporters, secreted proteins, and metabolic enzymes in a host-specific manner. As phytoplasmas reside within the host cell, the proteins secreted from phytoplasmas are thought to play crucial roles in the interplay between phytoplasmas and host cells. Our microarray analysis revealed that the expression of the gene encoding the secreted protein PAM486 was highly upregulated in the plant host, which is also observed by immunohistochemical analysis, suggesting that this protein functions mainly when the phytoplasma grows in the plant host. Additionally, phytoplasma growth in planta was partially suppressed by an inhibitor of the MscL osmotic channel that is highly expressed in the plant host, suggesting that the osmotic channel might play an important role in survival in the plant host. These results also suggest that the elucidation of “host switching” mechanism may contribute to the development of novel pest controls
    corecore