14 research outputs found

    Scope of respite care for the old people population

    No full text
    <div><p>The molecular pathogenesis of avian influenza infection varies greatly with individual bird species and virus strain. The molecular pathogenesis of the highly pathogenic avian influenza virus (HPAIV) or the low pathogenic avian influenza virus (LPAIV) infection in avian species remains poorly understood. Thus, global immune response of chickens infected with HPAI H5N1 (A/duck/India/02CA10/2011) and LPAI H9N2 (A/duck/India/249800/2010) viruses was studied using microarray to identify crucial host genetic components responsive to these infection. HPAI H5N1 virus induced excessive expression of type I IFNs (IFNA and IFNG), cytokines (IL1B, IL18, IL22, IL13, and IL12B), chemokines (CCL4, CCL19, CCL10, and CX3CL1) and IFN stimulated genes (OASL, MX1, RSAD2, IFITM5, IFIT5, GBP 1, and EIF2AK) in lung tissues. This dysregulation of host innate immune genes may be the critical determinant of the severity and the outcome of the influenza infection in chickens. In contrast, the expression levels of most of these genes was not induced in the lungs of LPAI H9N2 virus infected chickens. This study indicated the relationship between host immune genes and their roles in pathogenesis of HPAIV infection in chickens.</p></div

    Secretor Status Is Strongly Associated with Microbial Alterations Observed during Pregnancy

    No full text
    <div><p>During pregnancy there are significant changes in gut microbiota composition and activity. The impact of secretor status as determined by genotyping <i>FUT2</i> (fucosyltransferase 2) gene was taken as one of the confounding factors associated with faecal microbiota changes during pregnancy. In this prospective study, we followed women during pregnancy (total = 123 of which secretors = 108, non-secretors = 15) and characterised their gut microbiota by quantitative polymerase chain reaction (qPCR), Fluorescence In situ Hybridisation (FISH), Denaturing Gradient Gel Electrophoresis (DGGE) and pyrosequencing. qPCR revealed that <i>C</i>. <i>coccoides group</i> counts decreased significantly in non-secretors in comparison to secretors (p = 0.02). Similar tendency was found by FISH analysis in <i>Clostridium histolyticum</i> and <i>Lactobacillus-Enterococcus</i> groups between the secretor and the non-secretor pregnant women. DGGE analysis showed significant decrease in richness of <i>Clostridium</i> sp. between secretor and non-secretor mothers during pregnancy. Pyrosequencing based analysis at phyla level showed that there is greater increase in Actinobacteria in secretors in comparison to non-secretors, whereas Proteobacteria showed more increase in non-secretors. Change in relative abundance of <i>Clostridiaceae</i> family from first to third trimester were significantly associated with secretor status of pregnant women (p = 0.05). Polyphasic approach for microbiota analysis points out that the host secretor status (FUT2 genotype) affects the gut microbiota during pregnancy. This may lead to altered infant gut microbiota colonization.</p></div

    Fluorescent in situ hybridization analysis for bacterial counts in faecal samples of pregnant women at first trimester and third trimester.

    No full text
    <p>a = Baseline differences at first trimester</p><p>b = test for secretor status as fixed effect</p><p>c = interaction between secretor and time as factors</p><p>d = P for time effect <0.0007, SD = Standard deviation</p><p>Fluorescent in situ hybridization analysis for bacterial counts in faecal samples of pregnant women at first trimester and third trimester.</p
    corecore