11 research outputs found
Hypothermia predicts mortality in critically ill elderly patients with sepsis
<p>Abstract</p> <p>Background</p> <p>Advanced age is one of the factors that increase mortality in intensive care. Sepsis and multi-organ failure are likely to further increase mortality in elderly patients.</p> <p>We compared the characteristics and outcomes of septic elderly patients (> 65 years) with younger patients (≤ 65 years) and identified factors during the first 24 hours of presentation that could predict mortality in elderly patients.</p> <p>Methods</p> <p>This study was conducted in a Level III intensive care unit with a case mix of medical and surgical patients excluding cardiac and neurosurgical patients.</p> <p>We performed a retrospective review of all septic patients admitted to our ICU between July 2004 and May 2007. In addition to demographics and co-morbidities, physiological and laboratory variables were analysed to identify early predictors of mortality in elderly patients with sepsis.</p> <p>Results</p> <p>Of 175 patients admitted with sepsis, 108 were older than 65 years. Elderly patients differed from younger patients with regard to sex, temperature (37.2°C VS 37.8°C p < 0.01), heart rate, systolic blood pressure, pH, HCO<sub>3</sub>, potassium, urea, creatinine, APACHE III and SAPS II. The ICU and hospital mortality was significantly higher in elderly patients (10.6% Vs 23.14% (p = 0.04) and 19.4 Vs 35.1 (p = 0.02) respectively). Elderly patients who died in hospital had a significant difference in pH, HCO<sub>3</sub>, mean blood pressure, potassium, albumin, organs failed, lactate, APACHE III and SAPS II compared to the elderly patients who survived while the mean age and co-morbidities were comparable. Logistic regression analysis identified temperature (OR [per degree centigrade decrease] 0.51; 95% CI 0.306- 0.854; p = 0.010) and SAPS II (OR [per point increase]: 1.12; 95% CI 1.016-1.235; p = 0.02) during the first 24 hours of admission to independently predict increased hospital mortality in elderly patients.</p> <p>Conclusions</p> <p>The mortality in elderly patients with sepsis is higher than the younger patients. Temperature (hypothermia) and SAPS II scores during the first 24 hours of presentation independently predict hospital mortality.</p
Intensive care discharge delay is associated with increased hospital length of stay: A multicentre prospective observational study
BACKGROUND: Some patients experience a delayed discharge from the intensive care unit (ICU) where the intended and actual discharge times do not coincide. The clinical implications of this remain unclear. OBJECTIVE: To determine the incidence and duration of delayed ICU discharge, identify the reasons for delay and evaluate the clinical consequences. METHODS: Prospective multi-centre observational study involving five ICUs over a 3-month period. Delay in discharge was defined as >6 hours from the planned discharge time. The primary outcome measure was hospital length stay after ICU discharge decision. Secondary outcome measures included ICU discharge after-hours, incidence of delirium, survival to hospital discharge, discharge destination, the incidence of ICU acquired infections, revocation of ICU discharge decision, unplanned readmissions to ICU within 72 hours, review of patients admitting team after ICU discharge decision. RESULTS: A total of 955 out of 1118 patients discharged were included in analysis. 49.9% of the patients discharge was delayed. The most common reason (74%) for delay in discharge was non-availability of ward bed. The median duration of the delay was 24 hours. On univariable analysis, the duration of hospital stay from the time of ICU discharge decision was significantly higher in patients who had ICU discharge delay (Median days-5 vs 6; p = 0.003). After-hours discharge was higher in patients whose discharge was delayed (34% Vs 10%; p<0.001). There was no statistically significant difference in the other secondary outcomes analysed. Multivariable analysis adjusting for known confounders revealed delayed ICU discharge was independently associated with increased hospital length of stay. CONCLUSION: Half of all ICU patients experienced a delay in ICU discharge. Delayed discharge was associated with increased hospital length of stay
Intensive care discharge delay is associated with increased hospital length of stay: A multicentre prospective observational study.
Some patients experience a delayed discharge from the intensive care unit (ICU) where the intended and actual discharge times do not coincide. The clinical implications of this remain unclear.To determine the incidence and duration of delayed ICU discharge, identify the reasons for delay and evaluate the clinical consequences.Prospective multi-centre observational study involving five ICUs over a 3-month period. Delay in discharge was defined as >6 hours from the planned discharge time. The primary outcome measure was hospital length stay after ICU discharge decision. Secondary outcome measures included ICU discharge after-hours, incidence of delirium, survival to hospital discharge, discharge destination, the incidence of ICU acquired infections, revocation of ICU discharge decision, unplanned readmissions to ICU within 72 hours, review of patients admitting team after ICU discharge decision.A total of 955 out of 1118 patients discharged were included in analysis. 49.9% of the patients discharge was delayed. The most common reason (74%) for delay in discharge was non-availability of ward bed. The median duration of the delay was 24 hours. On univariable analysis, the duration of hospital stay from the time of ICU discharge decision was significantly higher in patients who had ICU discharge delay (Median days-5 vs 6; p = 0.003). After-hours discharge was higher in patients whose discharge was delayed (34% Vs 10%; p<0.001). There was no statistically significant difference in the other secondary outcomes analysed. Multivariable analysis adjusting for known confounders revealed delayed ICU discharge was independently associated with increased hospital length of stay.Half of all ICU patients experienced a delay in ICU discharge. Delayed discharge was associated with increased hospital length of stay
Intensive care discharge delay is associated with increased hospital length of stay: A multicentre prospective observational study
Correction: Impact of renal-replacement therapy strategies on outcomes for patients with chronic kidney disease: a secondary analysis of the STARRT-AKI trial
The Effect of an Accelerated Renal Replacement Therapy Initiation Is Not Modified by Baseline Risk
A Bayesian reanalysis of the Standard versus Accelerated Initiation of Renal-Replacement Therapy in Acute Kidney Injury (STARRT-AKI) trial
Background
Timing of initiation of kidney-replacement therapy (KRT) in critically ill patients remains controversial. The Standard versus Accelerated Initiation of Renal-Replacement Therapy in Acute Kidney Injury (STARRT-AKI) trial compared two strategies of KRT initiation (accelerated versus standard) in critically ill patients with acute kidney injury and found neutral results for 90-day all-cause mortality. Probabilistic exploration of the trial endpoints may enable greater understanding of the trial findings. We aimed to perform a reanalysis using a Bayesian framework.
Methods
We performed a secondary analysis of all 2927 patients randomized in multi-national STARRT-AKI trial, performed at 168 centers in 15 countries. The primary endpoint, 90-day all-cause mortality, was evaluated using hierarchical Bayesian logistic regression. A spectrum of priors includes optimistic, neutral, and pessimistic priors, along with priors informed from earlier clinical trials. Secondary endpoints (KRT-free days and hospital-free days) were assessed using zero–one inflated beta regression.
Results
The posterior probability of benefit comparing an accelerated versus a standard KRT initiation strategy for the primary endpoint suggested no important difference, regardless of the prior used (absolute difference of 0.13% [95% credible interval [CrI] − 3.30%; 3.40%], − 0.39% [95% CrI − 3.46%; 3.00%], and 0.64% [95% CrI − 2.53%; 3.88%] for neutral, optimistic, and pessimistic priors, respectively). There was a very low probability that the effect size was equal or larger than a consensus-defined minimal clinically important difference. Patients allocated to the accelerated strategy had a lower number of KRT-free days (median absolute difference of − 3.55 days [95% CrI − 6.38; − 0.48]), with a probability that the accelerated strategy was associated with more KRT-free days of 0.008. Hospital-free days were similar between strategies, with the accelerated strategy having a median absolute difference of 0.48 more hospital-free days (95% CrI − 1.87; 2.72) compared with the standard strategy and the probability that the accelerated strategy had more hospital-free days was 0.66.
Conclusions
In a Bayesian reanalysis of the STARRT-AKI trial, we found very low probability that an accelerated strategy has clinically important benefits compared with the standard strategy. Patients receiving the accelerated strategy probably have fewer days alive and KRT-free. These findings do not support the adoption of an accelerated strategy of KRT initiation
Initiation of continuous renal replacement therapy versus intermittent hemodialysis in critically ill patients with severe acute kidney injury: a secondary analysis of STARRT-AKI trial
Background: There is controversy regarding the optimal renal-replacement therapy (RRT) modality for critically ill patients with acute kidney injury (AKI). Methods: We conducted a secondary analysis of the STandard versus Accelerated Renal Replacement Therapy in Acute Kidney Injury (STARRT-AKI) trial to compare outcomes among patients who initiated RRT with either continuous renal replacement therapy (CRRT) or intermittent hemodialysis (IHD). We generated a propensity score for the likelihood of receiving CRRT and used inverse probability of treatment with overlap-weighting to address baseline inter-group differences. The primary outcome was a composite of death or RRT dependence at 90-days after randomization. Results: We identified 1590 trial participants who initially received CRRT and 606 who initially received IHD. The composite outcome of death or RRT dependence at 90-days occurred in 823 (51.8%) patients who commenced CRRT and 329 (54.3%) patients who commenced IHD (unadjusted odds ratio (OR) 0.90; 95% confidence interval (CI) 0.75-1.09). After balancing baseline characteristics with overlap weighting, initial receipt of CRRT was associated with a lower risk of death or RRT dependence at 90-days compared with initial receipt of IHD (OR 0.81; 95% CI 0.66-0.99). This association was predominantly driven by a lower risk of RRT dependence at 90-days (OR 0.61; 95% CI 0.39-0.94). Conclusions: In critically ill patients with severe AKI, initiation of CRRT, as compared to IHD, was associated with a significant reduction in the composite outcome of death or RRT dependence at 90-days
