16 research outputs found

    Compound-specific Carbon Isotope Compositions of Aldehydes and Ketones in the Murchison Meteorite

    Get PDF
    Compoundspecific carbon isotope analysis (13C) of meteoritic organic compounds can be used to elucidate the abiotic chemical reactions involved in their synthesis. The soluble organic content of the Murchison carbonaceous chondrite has been extensively investigated over the years, with a focus on the origins of amino acids and the potential role of Streckercyanohydrin synthesis in the early solar system. Previous 13C investigations have targeted amino acid and hydroxy acid Strecker products and reactant HCN; however, 13C values for meteoritic aldehydes and ketones (Strecker precursors) have not yet been reported. As such, the distribution of aldehydes and ketones in the cosmos and their role in prebiotic reactions have not been fully investigated. Here, we have applied an optimized O(2,3,4,5,6pentafluorobenzyl)hydroxylamine (PFBHA) derivatization procedure to the extraction, identification, and 13C analysis of carbonyl compounds in the Murchison meteorite. A suite of aldehydes and ketones, dominated by acetaldehyde, propionaldehyde, and acetone, were detected in the sample. 13C values, ranging from 10.0 to +66.4, were more 13Cdepleted than would be expected for aldehydes and ketones derived from the interstellar medium, based on interstellar 12C/13C ratios. These relatively 13Cdepleted values suggest that chemical processes taking place in asteroid parent bodies (e.g., oxidation of the IOM) may provide a secondary source of aldehydes and ketones in the solar system. Comparisons between 13C compositions of meteoritic aldehydes and ketones and other organic compound classes were used to evaluate potential structural relationships and associated reactions, including Strecker synthesis and alterationdriven chemical pathways

    New Insights into the Heterogeneity of the Tagish Lake Meteorite: Soluble Organic Compositions of Variously Altered Specimens

    Get PDF
    The Tagish Lake carbonaceous chondrite exhibits a unique compositional heterogeneity that may be attributed to varying degrees of aqueous alteration within the parent body asteroid. Previous analyses of soluble organic compounds from four Tagish Lake meteorite specimens (TL5b, TL11h, TL11i, TL11v) identified distinct distributions and isotopic compositions that appeared to be linked to their degree of parent body processing (Herd et al. 2011; Glavin et al. 2012; Hilts et al. 2014). In the present study, we build upon these initial observations and evaluate the molecular distribution of amino acids, aldehydes and ketones, monocarboxylic acids, and aliphatic and aromatic hydrocarbons, including compoundspecific 13C compositions, for three additional Tagish Lake specimens: TL1, TL4, and TL10a. TL1 contains relatively high abundances of soluble organics and appears to be a moderately altered specimen, similar to the previously analyzed TL5b and TL11h lithologies. In contrast, specimens TL4 and TL10a both contain relatively low abundances of all of the soluble organic compound classes measured, similar to TL11i and TL11v. The organicdepleted composition of TL4 appears to have resulted from a relatively low degree of parent body aqueous alteration. In the case of TL10a, some unusual properties (e.g., the lack of detection of intrinsic monocarboxylic acids and aliphatic and aromatic hydrocarbons) suggest that it has experienced extensive alteration and/or a distinct organicdepleted alteration history. Collectively, these varying compositions provide valuable new insights into the relationships between asteroidal aqueous alteration and the synthesis and preservation of soluble organic compounds

    Origin and Evolution of Prebiotic Organic Matter as Inferred from the Tagish Lake Meteorite

    Get PDF
    The complex suite of organic materials in carbonaceous chondrite meteorites probably originally formed in the interstellar medium and/or the solar protoplanetary disk, but was subsequently modified in the meteorites' asteroidal parent bodies. The mechanisms of formation and modification are still very poorly understood. We carried out a systematic study of variations in the mineralogy, petrology, and soluble and insoluble organic matter in distinct fragments of the Tagish Lake meteorite. The variations correlate with indicators of parent body aqueous alteration and at least some molecules of pre-biotic importance formed during the alteration

    Compound-Specific Carbon Isotope Compositions of Aldehydes and Ketones in the Murchison Meteorite

    No full text
    Compound-specific carbon isotope analysis (delta(exp 13)C) of meteoritic organic compounds can be used to elucidate the abiotic chemical reactions involved in their synthesis. The soluble organic content of the Murchison carbonaceous chondrite has been extensively investigated over the years, with a focus on the origins of amino acids and the potential role of Strecker-cyanohydrin synthesis in the early solar system. Previous delta(exp 13)C investigations have targeted alpha-amino acid and alpha-hydroxy acid Strecker products and reactant HCN; however, delta(exp 13)C values for meteoritic aldehydes and ketones (Strecker precursors) have not yet been reported. As such, the distribution of aldehydes and ketones in the cosmos and their role in prebiotic reactions have not been fully investigated. Here, we have applied an optimized O-(2,3,4,5,6-pentafluorobenzyl)hydroxylamine (PFBHA) derivatization procedure to the extraction, identification, and delta(exp 13)C analysis of carbonyl compounds in the Murchison meteorite. A suite of aldehydes and ketones, dominated by acetaldehyde, propionaldehyde, and acetone, were detected in the sample. delta(exp 13)C values, ranging from -10.0(0/00) to +66.4(0/00), were more (exp 13)C-depleted than would be expected for aldehydes and ketones derived from the interstellar medium, based on interstellar (exp 12)C/(exp 13)C ratios. These relatively (exp 13)C-depleted values suggest that chemical processes taking place in asteroid parent bodies (e.g., oxidation of the IOM) may provide a secondary source of aldehydes and ketones in the solar system. Comparisons between delta(exp 13)C compositions of meteoritic aldehydes and ketones and other organic compound classes were used to evaluate potential structural relationships and associated reactions, including Strecker synthesis and alteration-driven chemical pathways

    Unusual Nonterrestrial L-proteinogenic Amino Acid excesses in the Tagish Lake Meteorite

    No full text
    The distribution and isotopic and enantiomeric compositions of amino acids found in three distinct fragments of the Tagish Lake C2-type carbonaceous chondrite were investigated via liquid chromatography with fluorescence detection and time-of-flight mass spectrometry and gas chromatography isotope ratio mass spectrometry. Large L-enantiomeric excesses (L(sub ee) approximately 43-59%) of the alpha-hydrogen aspartic and glutamic amino acids were measured in Tagish Lake, whereas alanine, another alpha hydrogen protein amino acid, was found to be nearly racemic (D much approximately L) using both techniques. Carbon isotope measurements of D- and L-aspartic acid and 1)- and L-alanine in Tagish Lake fall well outside of the terrestrial range and indicate that the measured aspartic acid enantioenrichment is indigenous to the meteorite. Alternate explanations for the L-excesses of aspartic acid such as interference from other compounds present in the sample, analytical biases, or terrestrial amino acid contamination were investigated and rejected. These results can be explained by differences in the solid-solution phase behavior of aspartic acid, which can form conglomerate enantiopure solids during crystallization, and alanine, which can only form racemic crystals. Amplification of a small initial L-enantiomer excess during aqueous alteration on the meteorite parent body could have led to the large L-enrichments observed for aspartic acid and other conglomerate amino acids in Tagish Lake. The detection of non terrestrial L-proteinogenic amino acid excesses in the Tagish Lake meteorite provides support for the hypothesis that significant enantiomeric enrichments for some amino acids could form by abiotic processes prior to the emergence of life

    Synthesis, Properties, and Bishomoaromaticity of the First Tetrahalogenated Derivative of a 1, 5-Diphosphadithiatetrazocine: A Combined Experimental and Computational Investigation

    No full text
    The first example of a tetrahalogenated derivative of a diphosphadithiatetrazocine, 1,5-Cl2P(NSN)(2)PCl2 (3), was synthesized by cyclocondensation of a 2:1 mixture of SCl2 and SO2Cl2 with Cl2P(NSiMe3)N(SiMe3)(2) in CH2Cl2. The heterocycle 3 was isolated as an orange, moisture-sensitive, thermally labile solid and characterized by mass spectrometry, P-31 NMR, and UV visible spectroscopy, The low-field P-31 NMR chemical shift (93.7 ppm) is indicative of a cross-ring S-S interaction in the eight-membered P2N4S2 ring, and this conclusion is supported by densityfunctional computations. Compound 3 exhibits unusual physical properties compared with those of the known tetraalkyl or aryl derivatives; mild heating (90 degrees C) produces an orange rubbery material. The bishomoaromatic character of the diphosphadithiatetrazocine 1,5-R2P(NSN)(2)PR2 (R = Me, Cl, F) is evinced by the negative nucleusindependent chemical shift (NICS) values, and the through-space bishomoconjugation in the eight-membered ring decreases with increasing electronegativity of the substituents attached to the P atoms.NSERC ; U.S.A. by NSF [CHE-0716718]; Institute for Functional Nanomaterials [0701525]; U.S. Environmental Protection Agency [RD-83385601]; NSFC [20973137, 20721002, 20423002]; 973 program [2007CB815307
    corecore