5,388 research outputs found
Sonic-boom measurements in the focus region during the ascent of Apollo 17
Sonic-boom pressure signatures recorded during the ascent phase of Apollo 17 are presented. The measurements were obtained onboard six U.S. Navy ships positioned along the ground track of the spacecraft vehicle in the area of expected focus resulting from the flight path and acceleration of the vehicle. Tracings of the measured signatures are presented along with values of the maximum positive overpressure, positive impulse, signature duration, and bowshock rise time. Also included are brief descriptions of the ships and their location, the deployment of the sonic-boom instrumentation, flight profiles and operating conditions for the launch vehicle and spacecraft, surface-weather and sea-state information at the measuring sites, and high-altitude weather information for the general measurement areas. Comparisons of the measured and predicted sonic-boom overpressures for the Apollo 17 mission are presented. The measured data are also compared with data from the Apollo 15 and 16 missions and data from flight test programs of various aircraft
Sonic-boom ground pressure measurements from the launch and reentry of Apollo 16
Sonic-boom pressure signatures recorded during the launch and reentry phases of the Apollo 16 mission are presented. Five measurements were obtained along the vehicle ground track: 69 km (37.3 n. mi.) 92 km (49.8 n. mi.), and 130 km (70.3 n. mi.) down range from the launch site during ascent, and at 185 km (100 n. mi.) and approximately 5.5 km (3 n. mi.) from the splash-down point during reentry. Tracings of the measured signatures are included along with values of the overpressure, impulse, time duration, and rise times. Also included are brief descriptions of the launch and recovery test areas in which the measurements were obtained, the sonic-boom instrumentation deployment, flight profiles, and operating conditions for the launch vehicle and spacecraft, surface weather information at the measuring sites, and high-altitude weather information for the general measurement areas. Comparisons of the sonic-boom overpressures from Apollo 15 and 16 along with those from current aircraft are also presented
Variability in airplane noise measurements
Aircraft position and meteorological effects on accuracy of acoustic measurements for turbojet engine
Results of the flight noise measurement program using a standard and modified SH-3A helicopter
A field noise measurement program has been conducted using both a standard SH-3A helicopter and an SH-3A helicopter modified to reduce external noise levels. Modifications included reducing rotor speed, increasing the number of rotor blades, modifying the blade-tip shapes, and acoustically treating the engine air intakes and exhaust. The purpose of this study was to document the noise characteristics recorded on the ground of each helicopter during flyby, hover, landing, and take-off operations. Based on an analysis of the measured results, the average of the overhead, overall, ontrack noise levels was approximately 4 db lower for the modified helicopter than for the standard helicopter. The improved in-flight noise characteristics, and associated small footprint areas and time durations, were judged to be mainly due to tail-rotor noise reductions. The noise reductions were obtained at the expense of required power increases at airspeeds greater than 70 knots for the modified helicopter
Flyover noise characteristics of a tilt-wing V/STOL aircraft (XC-142A)
A field noise measurement investigation was conducted during the flight testing of an XC-142A tilt-wing V/STOL aircraft to define its external noise characteristics. Measured time histories of overall sound pressure level show that noise levels are higher at lower airspeeds and decrease with increased speed up to approximately 160 knots. The primary noise sources were the four high-speed, main propellers. Flyover-noise time histories calculated by existing techniques for propeller noise prediction are in reasonable agreement with the experimental data
Results of the noise measurement program on a standard and modified OH-6A helicopter
A field noise measurement program has been conducted on a standard OH-6A helicopter and one that had been modified by reducing the rotor speed, altering rotor tip shape, and treating the engine exhaust and inlet to reduce the external noise levels. The modifications consisted of extensive aircraft design changes resulting in substantial noise reductions following state-of-art noise reduction techniques. The purpose of this study was to document the ground noise characteristics of each helicopter during flyover, hover, landing, and take-off operations. Based on an analysis of the measured results, the average of the overall on-track noise levels of the final modified helicopter was approximately 14 db lower than that for the standard helicopter. Narrow-band-spectra data of the hovering helicopter show a reduction in the overall noise due to the reductions achieved for the lifting main and antitorque tail rotor, engine exhaust, and gear box noise for the modified helicopter. The noise results of the test program are found to correlate generally with noise measurements made previously on this type of aircraft
Noise reduction studies for the U-10 airplane
A study was undertaken by the NASA Langley Research Center to determine the noise reduction potential of the U-10 airplane in order to reduce its aural detection distance. Static and flyover noise measurements were made to document the basic airplane noise signature. Two modifications to the airplane configuration are suggested as having the best potential for substantially reducing aural detection distance with small penalty to airplane performance or stability and control. These modifications include changing the present 3-blade propeller to a 5-blade propeller, changing the propeller diameter, and changing the propeller gear ratio, along with the use of an engine exhaust muffler. The aural detection distance corresponding to normal cruising flight at an altitude of 1,000 ft over grassy terrain is reduced from 28,000 ft (5.3 miles) to about 50 percent of that value for modification 1, and to about 25 percent for modification 2. For the aircraft operating at an altitude of 300 ft, the analysis indicates that relatively straightforward modifications could reduce the aural detection distance to approximately 0.9 mile. Operation of the aircraft at greatly reduced engine speed (1650 rpm) with a 1.3-cu-ft muffler provides aural detection distances slightly lower than modification 1
The effect of operations on the ground noise footprints associated with a large multibladed, nonbanging helicopter
In order to expand the data base of helicopter external noise characteristics, a flyover noise measurement program was conducted utilizing the NASA Civil Helicopter Research Aircraft. The remotely operated multiple array acoustics range (ROMAAR) and a 2560-m linear microphone array were utilized for the purpose of documenting the noise characteristics of the test helicopter during flyby and landing operations. By utilizing both ROMAAR concept and the linear array, the data necessary to plot the ground noise footprints and noise radiation patterns were obtained. Examples of the measured noise signature of the test helicopter, the ground noise footprint or contours, and the directivity patterns measured during level flyby and landing operations of a large, multibladed, nonbanging helicopter, the CH-53, are presented
- …