70 research outputs found

    Hypomethylation and expression of BEX2, IGSF4 and TIMP3 indicative of MLL translocations in Acute Myeloid Leukemia

    Get PDF
    Background Translocations of the Mixed Lineage Leukemia (MLL) gene occur in a subset (5%) of acute myeloid leukemias (AML), and in mixed phenotype acute leukemias in infancy - a disease with extremely poor prognosis. Animal model systems show that MLL gain of function mutations may contribute to leukemogenesis. Wild-type (wt) MLL possesses histone methyltransferase activity and functions at the level of chromatin organization by affecting the expression of specific target genes. While numerous MLL fusion proteins exert a diverse array of functions, they ultimately serve to induce transcription of specific genes. Hence, acute lymphoblastic leukemias (ALL) with MLL mutations (MLLmu) exhibit characteristic gene expression profiles including high-level expression of HOXA cluster genes. Here, we aimed to relate MLL mutational status and tumor suppressor gene (TSG) methylation/expression in acute leukemia cell lines. Results Using MS-MLPA (methylation-specific multiplex ligation-dependent probe amplification assay), methylation of 24 different TSG was analyzed in 28 MLLmu and MLLwt acute leukemia cell lines. On average, 1.8/24 TSG were methylated in MLLmu AML cells, while 6.2/24 TSG were methylated in MLLwt AML cells. Hypomethylation and expression of the TSG BEX2, IGSF4 and TIMP3 turned out to be characteristic of MLLmu AML cell lines. MLLwt AML cell lines displayed hypermethylated TSG promoters resulting in transcriptional silencing. Demethylating agents and inhibitors of histone deacetylases restored expression of BEX2, IGSF4 and TIMP3, confirming epigenetic silencing of these genes in MLLwt cells. The positive correlation between MLL translocation, TSG hypomethylation and expression suggested that MLL fusion proteins were responsible for dysregulation of TSG expression in MLLmu cells. This concept was supported by our observation that Bex2 mRNA levels in MLL-ENL transgenic mouse cell lines required expression of the MLL fusion gene. Conclusion These results suggest that the conspicuous expression of the TSG BEX2, IGSF4 and TIMP3 in MLLmu AML cell lines is the consequence of altered epigenetic properties of MLL fusion proteins

    SET-NUP214 fusion in acute myeloid leukemia- and T-cell acute lymphoblastic leukemia-derived cell lines

    Get PDF
    <p>Abstract</p> <p>Background</p> <p><it>SET-NUP214 </it>fusion resulting from a recurrent cryptic deletion, del(9)(q34.11q34.13) has recently been described in T-cell acute lymphoblastic leukemia (T-ALL) and in one case of acute myeloid leukemia (AML). The fusion protein appears to promote elevated expression of <it>HOXA </it>cluster genes in T-ALL and may contribute to the pathogenesis of the disease. We screened a panel of ALL and AML cell lines for <it>SET-NUP214 </it>expression to find model systems that might help to elucidate the cellular function of this fusion gene.</p> <p>Results</p> <p>Of 141 human leukemia/lymphoma cell lines tested, only the T-ALL cell line LOUCY and the AML cell line MEGAL expressed the <it>SET(TAF-</it>Iβ)-<it>NUP214 </it>fusion gene transcript. RT-PCR analysis specifically recognizing the alternative first exons of the two <it>TAF-</it>I isoforms revealed that the cell lines also expressed <it>TAF-</it>Iα-<it>NUP214 </it>mRNA. Results of fluorescence in situ hybridization (FISH) and array-based copy number analysis were both consistent with del(9)(q34.11q34.13) as described. Quantitative genomic PCR also confirmed loss of genomic material between <it>SET </it>and <it>NUP214 </it>in both cell lines. Genomic sequencing localized the breakpoints of the <it>SET </it>gene to regions downstream of the stop codon and to <it>NUP214 </it>intron 17/18 in both LOUCY and MEGAL cells. Both cell lines expressed the 140 kDa SET-NUP214 fusion protein.</p> <p>Conclusion</p> <p>Cell lines LOUCY and MEGAL express the recently described <it>SET-NUP214 </it>fusion gene. Of special note is that the formation of the <it>SET </it>exon 7/<it>NUP214 </it>exon 18 gene transcript requires alternative splicing as the <it>SET </it>breakpoint is located downstream of the stop codon in exon 8. The cell lines are promising model systems for <it>SET-NUP214 </it>studies and should facilitate investigating cellular functions of the the SET-NUP214 protein.</p

    DNA methylation regulates expression of VEGF-R2 (KDR) and VEGF-R3 (FLT4)

    Get PDF
    Abstract Background Vascular Endothelial Growth Factors (VEGFs) and their receptors (VEGF-Rs) are important regulators for angiogenesis and lymphangiogenesis. VEGFs and VEGF-Rs are not only expressed on endothelial cells but also on various subtypes of solid tumors and leukemias contributing to the growth of the malignant cells. This study was performed to examine whether VEGF-R2 (KDR) and VEGF-R3 (FLT4) are regulated by DNA methylation. Methods Real-time (RT) PCR analysis was performed to quantify KDR and FLT4 expression in some ninety leukemia/lymphoma cell lines, human umbilical vein endothelial cells (HUVECs) and dermal microvascular endothelial cells (HDMECs). Western blot analyses and flow cytometric analyses confirmed results at the protein level. After bisulfite conversion of DNA we determined the methylation status of KDR and FLT4 by DNA sequencing and by methylation specific PCR (MSP). Western blot analyses were performed to examine the effect of VEGF-C on p42/44 MAPK activation. Results Expression of KDR and FLT4 was observed in cell lines from various leukemic entities, but not in lymphoma cell lines: 16% (10/62) of the leukemia cell lines expressed KDR, 42% (27/65) were FLT4 positive. None of thirty cell lines representing six lymphoma subtypes showed more than marginal expression of KDR or FLT4. Western blot analyses confirmed KDR and FLT4 protein expression in HDMECs, HUVECs and in cell lines with high VEGF-R mRNA levels. Mature VEGF-C induced p42/44 MAPK activation in the KDR- /FLT4+ cell line OCI-AML1 verifying the model character of this cell line for VEGF-C signal transduction studies. Bisulfite sequencing and MSP revealed that GpG islands in the promoter regions of KDR and FLT4 were unmethylated in HUVECs, HDMECs and KDR + and FLT4 + cell lines, whereas methylated cell lines did not express these genes. In hypermethylated cell lines, KDR and FLT4 were re-inducible by treatment with the DNA demethylating agent 5-Aza-2'deoxycytidine, confirming epigenetic regulation of both genes. Conclusions Our data show that VEGF-Rs KDR and FLT4 are silenced by DNA methylation. However, if the promoters are unmethylated, other factors (e.g. transactivation factors) determine the extent of KDR and FLT4 expression

    BCR-ABL1-independent PI3Kinase activation causing imatinib-resistance

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The <it>BCR-ABL1 </it>translocation occurs in chronic myeloid leukemia (CML) and in 25% of cases with acute lymphoblastic leukemia (ALL). The advent of tyrosine kinase inhibitors (TKI) has fundamentally changed the treatment of CML. However, TKI are not equally effective for treating ALL. Furthermore, <it>de novo </it>or <it>secondary </it>TKI-resistance is a significant problem in CML. We screened a panel of <it>BCR-ABL1 </it>positive ALL and CML cell lines to find models for imatinib-resistance.</p> <p>Results</p> <p>Five of 19 <it>BCR-ABL1 </it>positive cell lines were resistant to imatinib-induced apoptosis (KCL-22, MHH-TALL1, NALM-1, SD-1, SUP-B15). None of the resistant cell lines carried mutations in the kinase domain of <it>BCR-ABL1 </it>and all showed resistance to second generation TKI, nilotinib or dasatinib. STAT5, ERK1/2 and the ribosomal S6 protein (RPS6) are <it>BCR-ABL1 </it>downstream effectors, and all three proteins are dephosphorylated by imatinib in sensitive cell lines. TKI-resistant phosphorylation of RPS6, but responsiveness as regards JAK/STAT5 and ERK1/2 signalling were characteristic for resistant cell lines. PI3K pathway inhibitors effected dephosphorylation of RPS6 in imatinib-resistant cell lines suggesting that an oncogene other than <it>BCR-ABL1 </it>might be responsible for activation of the PI3K/AKT1/mTOR pathway, which would explain the TKI resistance of these cells. We show that the TKI-resistant cell line KCL-22 carries a PI3Kα E545G mutation, a site critical for the constitutive activation of the PI3K/AKT1 pathway. Apoptosis in TKI-resistant cells could be induced by inhibition of AKT1, but not of mTOR.</p> <p>Conclusion</p> <p>We introduce five Philadelphia-chromosome positive cell lines as TKI-resistance models. None of these cell lines carries mutations in the kinase domain of <it>BCR-ABL1 </it>or other molecular aberrations previously indicted in the context of imatinib-resistance. These cell lines are unique as they dephosphorylate ERK1/2 and STAT5 after treatment with imatinib, while PI3K/AKT1/mTOR activity remains unaffected. Inhibition of AKT1 leads to apoptosis in the imatinib-resistant cell lines. In conclusion, Ph+ cell lines show a form of imatinib-resistance attributable to constitutive activation of the PI3K/AKT1 pathway. Mutations in <it>PIK3CA</it>, as observed in cell line KCL-22, or PI3K activating oncogenes may undelie TKI-resistance in these cell lines.</p

    Epigenetic regulation of CD44 in Hodgkin and non-Hodgkin lymphoma

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Epigenetic inactivation of tumor suppressor genes (TSG) by promoter CpG island hypermethylation is a hallmark of cancer. To assay its extent in human lymphoma, methylation of 24 TSG was analyzed in lymphoma-derived cell lines as well as in patient samples.</p> <p>Methods</p> <p>We screened for TSG methylation using methylation-specific multiplex ligation-dependent probe amplification (MS-MLPA) in 40 lymphoma-derived cell lines representing anaplastic large cell lymphoma, Burkitt lymphoma (BL), diffuse large B-cell lymphoma (DLBCL), follicular lymphoma (FL), Hodgkin lymphoma and mantle cell lymphoma (MCL) as well as in 50 primary lymphoma samples. The methylation status of differentially methylated <it>CD44 </it>was verified by methylation-specific PCR and bisulfite sequencing. Gene expression of <it>CD44 </it>and its reactivation by DNA demethylation was determined by quantitative real-time PCR and on the protein level by flow cytometry. Induction of apoptosis by anti-CD44 antibody was analyzed by annexin-V/PI staining and flow cytometry.</p> <p>Results</p> <p>On average 8 ± 2.8 of 24 TSG were methylated per lymphoma cell line and 2.4 ± 2 of 24 TSG in primary lymphomas, whereas 0/24 TSG were methylated in tonsils and blood mononuclear cells from healthy donors. Notably, we identified that <it>CD44 </it>was hypermethylated and transcriptionally silenced in all BL and most FL and DLBCL cell lines, but was usually unmethylated and expressed in MCL cell lines. Concordant results were obtained from primary lymphoma material: <it>CD44 </it>was not methylated in MCL patients (0/11) whereas <it>CD44 </it>was frequently hypermethylated in BL patients (18/29). In cell lines with <it>CD44 </it>hypermethylation, expression was re-inducible at mRNA and protein levels by treatment with the DNA demethylating agent 5-Aza-2'-deoxycytidine, confirming epigenetic regulation of <it>CD44</it>. CD44 ligation assays with a monoclonal anti-CD44 antibody showed that CD44 can mediate apoptosis in CD44<sup>+ </sup>lymphoma cells. <it>CD44 </it>hypermethylated, CD44<sup>- </sup>lymphoma cell lines were consistently resistant towards anti-CD44 induced apoptosis.</p> <p>Conclusion</p> <p>Our data show that <it>CD44 </it>is epigenetically regulated in lymphoma and undergoes <it>de novo </it>methylation in distinct lymphoma subtypes like BL. Thus <it>CD44 </it>may be a promising new epigenetic marker for diagnosis and a potential therapeutic target for the treatment of specific lymphoma subtypes.</p

    High Accuracy Mutation Detection in Leukemia on a Selected Panel of Cancer Genes

    Get PDF
    <div><p>With the advent of whole-genome and whole-exome sequencing, high-quality catalogs of recurrently mutated cancer genes are becoming available for many cancer types. Increasing access to sequencing technology, including bench-top sequencers, provide the opportunity to re-sequence a limited set of cancer genes across a patient cohort with limited processing time. Here, we re-sequenced a set of cancer genes in T-cell acute lymphoblastic leukemia (T-ALL) using Nimblegen sequence capture coupled with Roche/454 technology. First, we investigated how a maximal sensitivity and specificity of mutation detection can be achieved through a benchmark study. We tested nine combinations of different mapping and variant-calling methods, varied the variant calling parameters, and compared the predicted mutations with a large independent validation set obtained by capillary re-sequencing. We found that the combination of two mapping algorithms, namely <em>BWA-SW</em> and <em>SSAHA2</em>, coupled with the variant calling algorithm <em>Atlas-SNP2</em> yields the highest sensitivity (95%) and the highest specificity (93%). Next, we applied this analysis pipeline to identify mutations in a set of 58 cancer genes, in a panel of 18 T-ALL cell lines and 15 T-ALL patient samples. We confirmed mutations in known T-ALL drivers, including PHF6, NF1, FBXW7, NOTCH1, KRAS, NRAS, PIK3CA, and PTEN. Interestingly, we also found mutations in several cancer genes that had not been linked to T-ALL before, including JAK3. Finally, we re-sequenced a small set of 39 candidate genes and identified recurrent mutations in TET1, SPRY3 and SPRY4. In conclusion, we established an optimized analysis pipeline for Roche/454 data that can be applied to accurately detect gene mutations in cancer, which led to the identification of several new candidate T-ALL driver mutations.</p> </div

    Molecular Genetics of Pre-B Acute Lymphoblastic Leukemia Sister Cell Lines during Disease Progression

    No full text
    For many years, immortalized tumor cell lines have been used as reliable tools to understand the function of oncogenes and tumor suppressor genes. Today, we know that tumors can comprise subclones with common and with subclone-specific genetic alterations. We sequenced DNA and RNA of sequential sister cell lines obtained from patients with pre-B acute lymphoblastic leukemia at different phases of the disease. All five pairs of cell lines carry alterations that are typical for this disease: loss of tumor suppressors (CDKN2A, CDKN2B), expression of fusion genes (ETV6-RUNX1, BCR-ABL1, MEF2D-BCL9) or of genes targeted by point mutations (KRAS A146T, NRAS G12C, PAX5 R38H). MEF2D-BCL9 and PAX R38H mutations in cell lines have hitherto been undescribed, suggesting that YCUB-4 (MEF2D-BCL9), PC-53 (PAX R38H) and their sister cell lines will be useful models to elucidate the function of these genes. All aberrations mentioned above occur in both sister cell lines, demonstrating that the sisters derive from a common ancestor. However, we also found mutations that are specific for one sister cell line only, pointing to individual subclones of the primary tumor as originating cells. Our data show that sequential sister cell lines can be used to study the clonal development of tumors and to elucidate the function of common and clone-specific mutations

    <it>CD7 </it>in acute myeloid leukemia: correlation with loss of wild-type <it>CEBPA</it>, consequence of epigenetic regulation

    Get PDF
    Abstract Background CD7 is a negative prognostic marker in myeloid malignancies. In acute myeloid leukemia (AML), an inverse correlation exists between expression of wild-type CEBPA and CD7. Aim of this study was to find out whether C/EBPα is a negative regulator of CD7 and which other regulatory mechanisms might be involved. Results As already described for primary AML cells, the majority of AML cell lines tested were either C/EBPα+/CD7- or C/EBPα-/CD7+. However, the existence of isolated CD7+ cell lines expressing wild-type C/EBPα challenges the notion that C/EBPα acts as a unique repressor of CD7. Furthermore, ectopic expression of CEBPA did not reduce CD7 in CD7+ cells and knock-down of C/EBPα failed to induce CD7 in CD7- cells. In contrast, the DNA demethylating agent Aza-2'deoxycytidine triggered CD7 expression in CD7- AML and in T-cell lines suggesting epigenetic regulation of CD7. Bisulfite sequencing data confirmed that CpGs in the CD7 exon1 region are methylated in CD7- cell lines, and unmethylated in CD7+ cell lines. Conclusion We confirmed an inverse correlation between the expression of wild-type CEBPA and of CD7 in AML cells. Our results contradict the hypothesis that C/EBPα acts as repressor for CD7, and instead show that epigenetic mechanisms are responsible for CD7 regulation, in AML cells as well as in T-cells, the typical CD7 expressing cell type.</p
    • …
    corecore