SET-NUP214 fusion in acute myeloid leukemia- and T-cell acute lymphoblastic leukemia-derived cell lines

Abstract

<p>Abstract</p> <p>Background</p> <p><it>SET-NUP214 </it>fusion resulting from a recurrent cryptic deletion, del(9)(q34.11q34.13) has recently been described in T-cell acute lymphoblastic leukemia (T-ALL) and in one case of acute myeloid leukemia (AML). The fusion protein appears to promote elevated expression of <it>HOXA </it>cluster genes in T-ALL and may contribute to the pathogenesis of the disease. We screened a panel of ALL and AML cell lines for <it>SET-NUP214 </it>expression to find model systems that might help to elucidate the cellular function of this fusion gene.</p> <p>Results</p> <p>Of 141 human leukemia/lymphoma cell lines tested, only the T-ALL cell line LOUCY and the AML cell line MEGAL expressed the <it>SET(TAF-</it>Iβ)-<it>NUP214 </it>fusion gene transcript. RT-PCR analysis specifically recognizing the alternative first exons of the two <it>TAF-</it>I isoforms revealed that the cell lines also expressed <it>TAF-</it>Iα-<it>NUP214 </it>mRNA. Results of fluorescence in situ hybridization (FISH) and array-based copy number analysis were both consistent with del(9)(q34.11q34.13) as described. Quantitative genomic PCR also confirmed loss of genomic material between <it>SET </it>and <it>NUP214 </it>in both cell lines. Genomic sequencing localized the breakpoints of the <it>SET </it>gene to regions downstream of the stop codon and to <it>NUP214 </it>intron 17/18 in both LOUCY and MEGAL cells. Both cell lines expressed the 140 kDa SET-NUP214 fusion protein.</p> <p>Conclusion</p> <p>Cell lines LOUCY and MEGAL express the recently described <it>SET-NUP214 </it>fusion gene. Of special note is that the formation of the <it>SET </it>exon 7/<it>NUP214 </it>exon 18 gene transcript requires alternative splicing as the <it>SET </it>breakpoint is located downstream of the stop codon in exon 8. The cell lines are promising model systems for <it>SET-NUP214 </it>studies and should facilitate investigating cellular functions of the the SET-NUP214 protein.</p

    Similar works