138 research outputs found

    L-Tryptophan: Basic Metabolic Functions, Behavioral Research and Therapeutic Indications

    Get PDF
    An essential component of the human diet, L-tryptophan is critical in a number of metabolic functions and has been widely used in numerous research and clinical trials. This review provides a brief overview of the role of L-tryptophan in protein synthesis and a number of other metabolic functions. With emphasis on L-tryptophan’s role in synthesis of brain serotonin, details are provided on the research uses of L-tryptophan, particularly L-tryptophan depletion, and on clinical trials that have been conducted using L-tryptophan supplementation. The ability to change the rates of serotonin synthesis in the brain by manipulating concentrations of serum tryptophan is the foundation of much research. As the sole precursor of serotonin, experimental research has shown that L-tryptophan’s role in brain serotonin synthesis is an important factor involved in mood, behavior, and cognition. Furthermore, clinical trials have provided some initial evidence of L-tryptophan’s efficacy for treatment of psychiatric disorders, particularly when used in combination with other therapeutic agents

    A Test of the Psychometric Characteristics of the BIS-Brief Among Three Groups of Youth

    Get PDF
    The current study empirically investigates the relationships between the Dark Triad personality traits and cyber-aggression among adolescents (14–18 year old). The sample consisted of 324 participants aged 14–18 (M = 16.05, SD = 1.31). Participants completed the Short Dark Triad (SD3) as a measure of the Dark Triad personality traits, the Facebook Intensity Scale and a scale to measure cyber-aggression. Structural equation modelling was applied to investigate the relationships. Results show that only Facebook intensity and psychopathy significantly predict cyber-aggression, when controlling for age and gender. Findings are discussed regarding the potential importance to further study Dark Triad traits, and psychopathy in particular, in the context of adolescent cyber-aggression

    Induction of Heme Oxygenase-1 Can Halt and Even Reverse Renal Tubule-Interstitial Fibrosis

    Get PDF
    Background: The tubule-interstitial fibrosis is the hallmark of progressive renal disease and is strongly associated with inflammation of this compartment. Heme-oxygenase-1 (HO-1) is a cytoprotective molecule that has been shown to be beneficial in various models of renal injury. However, the role of HO-1 in reversing an established renal scar has not yet been addressed. Aim: We explored the ability of HO-1 to halt and reverse the establishment of fibrosis in an experimental model of chronic renal disease. Methods: Sprague-Dawley male rats were subjected to unilateral ureteral obstruction (UUO) and divided into two groups: non-treated and Hemin-treated. To study the prevention of fibrosis, animals were pre-treated with Hemin at days -2 and -1 prior to UUO. To investigate whether HO-1 could reverse established fibrosis, Hemin therapy was given at days 6 and 7 post-surgery. After 7 and/or 14 days, animals were sacrificed and blood, urine and kidney tissue samples were collected for analyses. Renal function was determined by assessing the serum creatinine, inulin clearance, proteinuria/creatininuria ratio and extent of albuminuria. Arterial blood pressure was measured and fibrosis was quantified by Picrosirius staining. Gene and protein expression of pro-inflammatory and pro-fibrotic molecules, as well as HO-1 were performed. Results: Pre-treatment with Hemin upregulated HO-1 expression and significantly reduced proteinuria, albuminuria, inflammation and pro-fibrotic protein and gene expressions in animals subjected to UUO. Interestingly, the delayed treatment with Hemin was also able to reduce renal dysfunction and to decrease the expression of pro-inflammatory molecules, all in association with significantly reduced levels of fibrosis-related molecules and collagen deposition. Finally, TGF-beta protein production was significantly lower in Hemin-treated animals. Conclusion: Treatment with Hemin was able both to prevent the progression of fibrosis and to reverse an established renal scar. Modulation of inflammation appears to be the major mechanism behind HO-1 cytoprotection.Fundacao de Amparo Pesquisa do Estado de Sao Paulo-FAPESP[07/07139-3]Coordenaco de Aperfeioamento de Pessoal de Nivel Superior-CAPESInstituto Nacional de Ciencia e Tecnologia de Complexos Fluidos (INCT)Conselho Nacional de Desenvolvimento Cientifico e Tecnologico-CNP

    Elevation of the antifibrotic peptide N-acetyl-seryl-aspartyl-lysyl-proline: a blood pressure-independent beneficial effect of angiotensin I-converting enzyme inhibitors

    Get PDF
    Blockade of the renin-angiotensin system (RAS) is well recognized as an essential therapy in hypertensive, heart, and kidney diseases. There are several classes of drugs that block the RAS; these drugs are known to exhibit antifibrotic action. An analysis of the molecular mechanisms of action for these drugs can reveal potential differences in their antifibrotic roles. In this review, we discuss the antifibrotic action of RAS blockade with an emphasis on the potential importance of angiotensin I-converting enzyme (ACE) inhibition associated with the antifibrotic peptide N-acetyl-seryl-aspartyl-lysyl-proline (AcSDKP)

    Carbon monoxide: from silent killer to potential remedy

    No full text

    Heme Oxygenase-1 Deficiency Promotes Epithelial-Mesenchymal Transition and Renal Fibrosis

    No full text
    Induction of heme oxygenase-1 (HO-1) is associated with potential antifibrogenic effects. The effects of HO-1 expression on epithelial-mesenchymal transition (EMT), which plays a critical role in the development of renal fibrosis, are unknown. In this study, HO-1−/− mice demonstrated significantly more fibrosis after 7 d of unilateral ureteral obstruction compared with wild-type mice, despite similar degrees of hydronephrosis. The obstructed kidneys of HO-1−/− mice also had greater macrophage infiltration and renal tubular TGF-β1 expression than wild-type mice. In addition, the degree of EMT was more extensive in obstructed HO-1−/− kidneys, as assessed by α-smooth muscle actin and expression of S100A4 in proximal tubular epithelial cells. In vitro studies using proximal tubular cells isolated from HO-1−/− and wild-type kidneys confirmed these observations. In conclusion, HO-1 deficiency is associated with increased fibrosis, tubular TGF-β1 expression, inflammation, and enhanced EMT in obstructive kidney disease. Modulation of the HO-1 pathway may provide a new therapeutic approach to progressive renal diseases
    corecore