99,195 research outputs found

    Instrumentation for Millimeter-wave Magnetoelectrodynamic Investigations of Low-Dimensional Conductors and Superconductors

    Full text link
    We describe instrumentation for conducting high sensitivity millimeter-wave cavity perturbation measurements over a broad frequency range (40-200 GHz) and in the presence of strong magnetic fields (up to 33 tesla). A Millimeter-wave Vector Network Analyzer (MVNA) acts as a continuously tunable microwave source and phase sensitive detector (8-350 GHz), enabling simultaneous measurements of the complex cavity parameters (resonance frequency and Q-value) at a rapid repetition rate (approx. 10 kHz). We discuss the principal of operation of the MVNA and the construction of a probe for coupling the MVNA to various cylindrical resonator configurations which can easily be inserted into a high field magnet cryostat. We also present several experimental results which demonstrate the potential of the instrument for studies of low-dimensional conducting systems.Comment: 20 pages including fig

    Development and stability of gyrotactic plumes in bioconvection

    Get PDF
    Using the continuum model of Pedley, Hill and Kessler (1988) for bioconvection in a suspension of swimming, gyrotactic micro-organisms, we investigate the existence and stability of a two-dimensional plume in tall, narrow chambers with stress-free sidewalls. The system is governed by the Navier–Stokes equations for an incompressible fluid coupled with a micro-organism conservation equation. These equations are solved numerically using a conservative finite-difference scheme. In sufficiently deep chambers, the plume is always unstable to both varicose and meandering modes. A linear stability analysis for an infinitely long plume predicts the growth rates of these instabilities, explains the mechanisms, and is in good agreement with the numerical results

    The analytical representation of viscoelastic material properties using optimization techniques

    Get PDF
    This report presents a technique to model viscoelastic material properties with a function of the form of the Prony series. Generally, the method employed to determine the function constants requires assuming values for the exponential constants of the function and then resolving the remaining constants through linear least-squares techniques. The technique presented here allows all the constants to be analytically determined through optimization techniques. This technique is employed in a computer program named PRONY and makes use of commercially available optimization tool developed by VMA Engineering, Inc. The PRONY program was utilized to compare the technique against previously determined models for solid rocket motor TP-H1148 propellant and V747-75 Viton fluoroelastomer. In both cases, the optimization technique generated functions that modeled the test data with at least an order of magnitude better correlation. This technique has demonstrated the capability to use small or large data sets and to use data sets that have uniformly or nonuniformly spaced data pairs. The reduction of experimental data to accurate mathematical models is a vital part of most scientific and engineering research. This technique of regression through optimization can be applied to other mathematical models that are difficult to fit to experimental data through traditional regression techniques

    Can my mechanic fix blue cars? A discussion of health clinician\u27s interactions with Aboriginal Australian clients

    Get PDF
    We expect our professional mechanics to ‘diagnose’ and \u27treat\u27 our cars irrespective of colour, but are we expecting less from our health professionals? There is an increasing focus in the literature on health practitioner decision-making and its influence on the nature and quality of health care. In this article we explore how the basic diagnostic and therapeutic skills that health care practitioners have should be utilised equitably for all clients and propose ways this might be realised. Could the development of Indigenous specific curricula be teaching our medical students to think that Aboriginal patients are different from the norm? We conclude that despite the gains in introducing more comprehensive Aboriginal health curricula there remains considerable work to be done before we can be confident that we are ensuring that health practitioners are no longer contributing to health disparities

    T-Parity Violation by Anomalies

    Full text link
    Little Higgs theories often rely on an internal parity ("T-parity'') to suppress non-standard electroweak effects or to provide a dark matter candidate. We show that such a symmetry is generally broken by anomalies, as described by the Wess-Zumino-Witten term. We study a simple SU(3) x SU(3)/SU(3) Little Higgs scheme where we obtain a minimal form for the topological interactions of a single Higgs field. The results apply to more general models, including [SU(3) x SU(3)/SU(3)]^4, SU(5)/SO(5), and SU(6)/Sp(6).Comment: 17 page

    Topological Physics of Little Higgs Bosons

    Get PDF
    Topological interactions will generally occur in composite Higgs or Little Higgs theories, extra-dimensional gauge theories in which A_5 plays the role of a Higgs boson, and amongst the pNGB's of technicolor. This phenomena arises from the chiral and anomaly structure of the underlying UV completion theory, and/or through chiral delocalization in higher dimensions. These effects are described by a full Wess-Zumino-Witten term involving gauge fields and pNGB's. We give a general discussion of these interactions, some of which may have novel signatures at future colliders, such as the LHC and ILC.Comment: 22 page

    The Complete Jamming Landscape of Confined Hard Discs

    Full text link
    An exact description of the complete jamming landscape is developed for a system of hard discs of diameter σ\sigma, confined between two lines separated by a distance 1+3/4<H/σ<21+\sqrt{3/4} < H/\sigma < 2. By considering all possible local packing arrangements, the generalized ensemble partition function of jammed states is obtained using the transfer matrix method, which allows us to calculate the configurational entropy and the equation of state for the packings. Exploring the relationship between structural order and packing density, we find that the geometric frustration between local packing environments plays an important role in determining the density distribution of jammed states and that structural "randomness" is a non-monotonic function of packing density. Molecular dynamics simulations show that the properties of the equilibrium liquid are closely related to those of the landscape.Comment: 5 Pages, 4 figure
    • …
    corecore