51,069 research outputs found
Low-thrust chemical propulsion system propellant expulsion and thermal conditioning study
Thermal conditioning systems for satisfying engine net positive suction pressure (NPSP) requirements, and propellant expulsion systems for achieving propellant dump during a return-to-launch site (RTLS) abort were studied for LH2/LO2 and LCH4/LO2 upper stage propellant combinations. A state-of-the-art thermal conditioning system employing helium injection beneath the liquid surface shows the lowest weight penalty for LO2 and LCH4. A technology system incorporating a thermal subcooler (heat exchanger) for engine NPSP results in the lowest weight penalty for the LH2 tank. A preliminary design of two state-of-the-art and two new technology systems indicates a weight penalty difference too small to warrant development of a LH2 thermal subcooler. Analysis results showed that the LH2/LO2 propellant expulsion system is optimized for maximum dump line diameters, whereas the LCH4/LO2 system is optimized for minimum dump line diameter (LCH4) and maximum dump line diameter (LO2). The primary uncertainty is the accurate determination of two-phase flow rates through the dump system; experimentation is not recommended because this uncertainty is not considered significant
Low-thrust chemical propulsion system propellant expulsion and thermal conditioning study. Executive summary
Preferred techniques for providing abort pressurization and engine feed system net positive suction pressure (NPSP) for low thrust chemical propulsion systems (LTPS) were determined. A representative LTPS vehicle configuration is presented. Analysis tasks include: propellant heating analysis; pressurant requirements for abort propellant dump; and comparative analysis of pressurization techniques and thermal subcoolers
Equation of state for hard sphere fluids with and without Kac tails
In this note, we propose a simple derivation of the one dimensional hard rod
equation of state, with and without a Kac tail (appended long range and weak
potential). The case of hard spheres in higher dimension is also addressed and
it is shown there that our arguments --which avoid any mathematical
complication-- allow to recover the virial form of the equation of state in a
direct way.Comment: pedagogical pape
Surface phase transitions in one-dimensional channels arranged in a triangular cross-sectional structure: Theory and Monte Carlo simulations
Monte Carlo simulations and finite-size scaling analysis have been carried
out to study the critical behavior in a submonolayer lattice-gas of interacting
monomers adsorbed on one-dimensional channels arranged in a triangular
cross-sectional structure. The model mimics a nanoporous environment, where
each nanotube or unit cell is represented by a one-dimensional array. Two kinds
of lateral interaction energies have been considered: , interaction
energy between nearest-neighbor particles adsorbed along a single channel and
, interaction energy between particles adsorbed across
nearest-neighbor channels. For and , successive planes are
uncorrelated, the system is equivalent to the triangular lattice and the
well-known
ordered phase is found at low temperatures and a coverage, , of 1/3
. In the more general case ( and ), a
competition between interactions along a single channel and a transverse
coupling between sites in neighboring channels allows to evolve to a
three-dimensional adsorbed layer. Consequently, the and structures "propagate" along the
channels and new ordered phases appear in the adlayer. The Monte Carlo
technique was combined with the recently reported Free Energy Minimization
Criterion Approach (FEMCA), to predict the critical temperatures of the
order-disorder transformation. The excellent qualitative agreement between
simulated data and FEMCA results allow us to interpret the physical meaning of
the mechanisms underlying the observed transitions.Comment: 24 pages, 6 figure
Predicting the outcomes of treatment to eradicate the latent reservoir for HIV-1
Massive research efforts are now underway to develop a cure for HIV
infection, allowing patients to discontinue lifelong combination antiretroviral
therapy (ART). New latency-reversing agents (LRAs) may be able to purge the
persistent reservoir of latent virus in resting memory CD4+ T cells, but the
degree of reservoir reduction needed for cure remains unknown. Here we use a
stochastic model of infection dynamics to estimate the efficacy of LRA needed
to prevent viral rebound after ART interruption. We incorporate clinical data
to estimate population-level parameter distributions and outcomes. Our findings
suggest that approximately 2,000-fold reductions are required to permit a
majority of patients to interrupt ART for one year without rebound and that
rebound may occur suddenly after multiple years. Greater than 10,000-fold
reductions may be required to prevent rebound altogether. Our results predict
large variation in rebound times following LRA therapy, which will complicate
clinical management. This model provides benchmarks for moving LRAs from the
lab to the clinic and can aid in the design and interpretation of clinical
trials. These results also apply to other interventions to reduce the latent
reservoir and can explain the observed return of viremia after months of
apparent cure in recent bone marrow transplant recipients and an
immediately-treated neonate.Comment: 8 pages main text (4 figures). In PNAS Early Edition
http://www.pnas.org/content/early/2014/08/05/1406663111. Ancillary files: SI,
24 pages SI (7 figures). File .htm opens a browser-based application to
calculate rebound times (see SI). Or, the .cdf file can be run with
Mathematica. The most up-to-date version of the code is available at
http://www.danielrosenbloom.com/reboundtimes
Radial flow has little effect on clusterization at intermediate energies in the framework of the Lattice Gas Model
The Lattice Gas Model was extended to incorporate the effect of radial flow.
Contrary to popular belief, radial flow has little effect on the clusterization
process in intermediate energy heavy-ion collisions except adding an ordered
motion to the particles in the fragmentation source. We compared the results
from the lattice gas model with and without radial flow to experimental data.
We found that charge yields from central collisions are not significantly
affected by inclusion of any reasonable radial flow.Comment: 8 pages, 2 figures, submitted to PRC; Minor update and resubmitted to
PR
Word Embeddings for Entity-annotated Texts
Learned vector representations of words are useful tools for many information
retrieval and natural language processing tasks due to their ability to capture
lexical semantics. However, while many such tasks involve or even rely on named
entities as central components, popular word embedding models have so far
failed to include entities as first-class citizens. While it seems intuitive
that annotating named entities in the training corpus should result in more
intelligent word features for downstream tasks, performance issues arise when
popular embedding approaches are naively applied to entity annotated corpora.
Not only are the resulting entity embeddings less useful than expected, but one
also finds that the performance of the non-entity word embeddings degrades in
comparison to those trained on the raw, unannotated corpus. In this paper, we
investigate approaches to jointly train word and entity embeddings on a large
corpus with automatically annotated and linked entities. We discuss two
distinct approaches to the generation of such embeddings, namely the training
of state-of-the-art embeddings on raw-text and annotated versions of the
corpus, as well as node embeddings of a co-occurrence graph representation of
the annotated corpus. We compare the performance of annotated embeddings and
classical word embeddings on a variety of word similarity, analogy, and
clustering evaluation tasks, and investigate their performance in
entity-specific tasks. Our findings show that it takes more than training
popular word embedding models on an annotated corpus to create entity
embeddings with acceptable performance on common test cases. Based on these
results, we discuss how and when node embeddings of the co-occurrence graph
representation of the text can restore the performance.Comment: This paper is accepted in 41st European Conference on Information
Retrieva
Energetics of Open Systems and Chemical Potential From Micro-Dynamics Viewpoints
We present the energetic aspect of open systems which may exchange particles
with their environments. Our attention shall be paid to the scale that the
motion of the particles is described by the classical Langevin dynamics. Along
a particular realization of the stochastic process, we study the energy
transfer into the open system from the environments. We are able to clarify how
much energy each particle carries when it enters or leaves the system. On the
other hand, the chemical potential should be considered as the concept in macro
scale, which is relevant to the free energy potential with respect to the
number of particles. Keywords: open systems, stochastic energetics, chemical
potentialComment: 7 pages, 1 figur
Dynamics of axial separation in long rotating drums
We propose a continuum description for the axial separation of granular
materials in a long rotating drum. The model, operating with two local
variables, concentration difference and the dynamic angle of repose, describes
both initial transient traveling wave dynamics and long-term segregation of the
binary mixture. Segregation proceeds through ultra-slow logarithmic coarsening.Comment: 4 pages, 3 Postscript figures; submitted to PR
- …