6,515 research outputs found

    Simultaneous Kummer congruences and E\mathbb{E}_\infty-orientations of KO and tmf

    Full text link
    Building on results of M. Ando, M.J. Hopkins and C. Rezk, we show the existence of uncountably many E\mathbb{E}_\infty-String orientations of real K-theory KO and of topological modular forms tmf, generalizing the A^\hat{A}- (resp. the Witten) genus. Furthermore, the obstruction to lifting an E\mathbb{E}_\infty-String orientations from KO to tmf is identified with a classical Iwasawa-theoretic condition. The common key to all these results is a precise understanding of the classical Kummer congruences, imposed for all primes simultaneously. This result is of independent arithmetic interest.Comment: final versio

    Atomic spectrometry updates. Review of advances in elemental speciation

    Get PDF
    This is the sixth Atomic Spectrometry Update (ASU) to focus specifically on advances in elemental speciation and covers a period of approximately 12 months from December 2012. This review deals with all aspects of the analytical speciation methods developed for: the determination of oxidation states; organometallic compounds; coordination compounds; metal and heteroatom- containing biomolecules, including metalloproteins, proteins, peptides and amino acids; and the use of metal-tagging to facilitate detection via atomic spectrometry. The review does not specifically deal with fractionation, sometimes termed operationally defined speciation. As with all ASU reviews 1-5 the coverage of the topic is confined to those methods that incorporate atomic spectrometry as the measurement technique. However, molecular MS techniques are covered where the use is in parallel or series with atomic spectrometry. As with previous years As and Se speciation continues to dominate current literature. However, research is moving further towards understanding the toxicological and beneficial mechanisms of these two elements. There is also in increase in macromolecular analysis, with a decrease in detection limits for some methodologies, which increases the potential clinical use of the techniques employed. The use of both atomic and molecular spectrometry is well developed in these fields, highlighting the interdisciplinary nature of today's research environment. The trend towards lower cost more rapid analytical methods, often involving non-chromatographic speciation, also continues apace. This journal is © 2014 the Partner Organisations

    Atomic spectrometry update: Review of advances in elemental speciation

    Get PDF
    This is the 12th Atomic Spectrometry Update (ASU) to focus on advances in elemental speciation and covers a period of approximately 12 months from December 2018. This ASU review deals with all aspects of the analytical atomic spectrometry speciation methods developed for: the determination of oxidation states; organometallic compounds; coordination compounds; metal and heteroatom-containing biomolecules, including metalloproteins, proteins, peptides and amino acids; and the use of metal-tagging to facilitate detection via atomic spectrometry. As with all ASU reviews the focus of the research reviewed includes those methods that incorporate atomic spectrometry as the measurement technique. However, because speciation analysis is inherently focused on the relationship between the metal(loid) atom and the organic moiety it is bound to, or incorporated within, atomic spectrometry alone cannot be the sole analytical approach of interest. For this reason molecular detection techniques are also included where they have provided a complementary approach to speciation analysis. This year the number of publications concerning As speciation has fallen by about half, as have studies on Se speciation. Growth areas continue to be Hg and ‘biomolecules’, with the number of reports concerning halogen and sulfur speciation also rising. The number of elements covered this year is again over 20, showing the breadth of the elemental speciation field

    Revising Pediatric Vancomycin Dosing Accounting for Nephrotoxicity in a Pharmacokinetic-Pharmacodynamic Model

    Get PDF
    This study aimed to suggest an initial pediatric vancomycin dose regimen through population pharmacokinetic-pharmacodynamic modeling. A population pharmacokinetic approach was used to analyze vancomycin concentration-time data from a large pediatric cohort. Pharmacokinetic target attainment for patients with bloodstream isolates was compared with clinical outcome using logistic regression and classification and regression trees. Change in serum creatinine during treatment was used as an indicator of acute nephrotoxicity. Probability of acute kidney injury (50% increase from baseline) or kidney failure (75% increase from baseline) was evaluated using logistic regression. An initial dosing regimen was derived, personalized by age, weight, and serum creatinine, using stochastic simulations. Data from 785 hospitalized pediatric patients (1 day to 21 years of age) with suspected Gram-positive infections were collected. Estimated (relative standard error) typical clearance, volume of distribution 1, intercompartmental clearance, and volume of distribution 2 were (standardized to 70 kg) 4.84 (2.38) liters/h, 39.9 (8.15) liters, 3.85 (17.3) liters/h, and 37.8 (10.2) liters, respectively. While cumulative vancomycin exposure correlated positively with the development of nephrotoxicity (713 patients), no clear relationship between vancomycin area under the plasma concentration-time curve and efficacy was found (102 patients). Predicted probability of acute kidney injury and kidney failure with the optimized dosing regimen at day 5 was 10 to 15% and 5 to 10%, increasing by approximately 50% on day 7 and roughly 100% on day 10 across all age groups. This study presents the first data-driven pediatric dose selection to date accounting for nephrotoxicity, and it indicates that cumulative vancomycin exposure best describes risk of acute kidney injury and acute kidney failure

    Expression of Interest: The Atmospheric Neutrino Neutron Interaction Experiment (ANNIE)

    Get PDF
    Submitted for the January 2014 Fermilab Physics Advisory Committee meetingSubmitted for the January 2014 Fermilab Physics Advisory Committee meetingSubmitted for the January 2014 Fermilab Physics Advisory Committee meetingSubmitted for the January 2014 Fermilab Physics Advisory Committee meetingNeutron tagging in Gadolinium-doped water may play a significant role in reducing backgrounds from atmospheric neutrinos in next generation proton-decay searches using megaton-scale Water Cherenkov detectors. Similar techniques might also be useful in the detection of supernova neutrinos. Accurate determination of neutron tagging efficiencies will require a detailed understanding of the number of neutrons produced by neutrino interactions in water as a function of momentum transferred. We propose the Atmospheric Neutrino Neutron Interaction Experiment (ANNIE), designed to measure the neutron yield of atmospheric neutrino interactions in gadolinium-doped water. An innovative aspect of the ANNIE design is the use of precision timing to localize interaction vertices in the small fiducial volume of the detector. We propose to achieve this by using early production of LAPPDs (Large Area Picosecond Photodetectors). This experiment will be a first application of these devices demonstrating their feasibility for Water Cherenkov neutrino detectors

    Spin qubits with electrically gated polyoxometalate molecules

    Full text link
    Spin qubits offer one of the most promising routes to the implementation of quantum computers. Very recent results in semiconductor quantum dots show that electrically-controlled gating schemes are particularly well-suited for the realization of a universal set of quantum logical gates. Scalability to a larger number of qubits, however, remains an issue for such semiconductor quantum dots. In contrast, a chemical bottom-up approach allows one to produce identical units in which localized spins represent the qubits. Molecular magnetism has produced a wide range of systems with tailored properties, but molecules permitting electrical gating have been lacking. Here we propose to use the polyoxometalate [PMo12O40(VO)2]q-, where two localized spins-1/2 can be coupled through the electrons of the central core. Via electrical manipulation of the molecular redox potential, the charge of the core can be changed. With this setup, two-qubit gates and qubit readout can be implemented.Comment: 9 pages, 6 figures, to appear in Nature Nanotechnolog

    Backbone resonance assignments of the monomeric DUF59 domain of human Fam96a

    Get PDF
    Proteins containing a domain of unknown function 59 (DUF59) appear to have a variety of physiological functions, ranging from iron-sulfur cluster assembly to DNA repair. DUF59 proteins have been found in bacteria, archaea and eukaryotes, however Fam96a and Fam96b are the only mammalian proteins predicted to contain a DUF59 domain. Fam96a is an 18 kDa protein comprised primarily of a DUF59 domain (residues 31-157) and an N-terminal signal peptide (residues 1-27). Interestingly, the DUF59 domain of Fam96a exists as monomeric and dimeric forms in solution, and X-ray crystallography studies of both forms unexpectedly revealed two different domain-swapped dimer structures. Here we report the backbone resonance assignments and secondary structure of the monomeric form of the 127 residue DUF59 domain of human Fam96a. This study provides the basis for further understanding the structural variability exhibited by Fam96a and the mechanism for domain swapping

    Atomic spectrometry update: review of advances in elemental speciation

    Get PDF
    crosscheck: This document is CrossCheck deposited copyright_licence: The Royal Society of Chemistry has an exclusive publication licence for this journal history: Received 13 June 2017; Advance Article published 23 June 2017; Version of Record published 5 July 201
    corecore