70,809 research outputs found

    'Older people for older people' toolkit: developing social enterprise and service delivery in remote and rural areas

    Get PDF

    Can the UNAIDS 90-90-90 target be achieved? A systematic analysis of national HIV treatment cascades

    Get PDF
    Background In 2014, the Joint United Nations Programme on HIV and AIDS (UNAIDS) and partners set the ‘90-90-90 targets’; aiming to diagnose 90% of all HIV positive people, provide antiretroviral therapy (ART) for 90% of those diagnosed and achieve viral suppression for 90% of those treated, by 2020. This results in 81% of all HIV positive people on treatment and 73% of all HIV positive people achieving viral suppression. We aimed to analyse how effective national HIV treatment programmes are at meeting these targets, using HIV care continuums or cascades. Methods We searched for HIV treatment cascades for 196 countries in published papers, conference presentations, UNAIDS databases and national reports. Cascades were constructed using reliable, generalisable, recent data from national, cross-sectional and longitudinal study cohorts. Data were collected for four stages; total HIV positive people, diagnosed, on treatment and virally suppressed. The cascades were categorised as complete (four stages) or partial (3 stages), and analysed for ‘break points’ defined as a drop >10% in coverage between consecutive 90-90-90 targets. Results 69 country cascades were analysed (32 complete, 37 partial). Diagnosis (target one—90%) ranged from 87% (the Netherlands) to 11% (Yemen). Treatment coverage (target two—81% on ART) ranged from 71% (Switzerland) to 3% (Afghanistan). Viral suppression (target three—73% virally suppressed) was between 68% (Switzerland) and 7% (China). Conclusions No country analysed met the 90-90-90 targets. Diagnosis was the greatest break point globally, but the most frequent key break point for individual countries was providing ART to those diagnosed. Large disparities were identified between countries. Without commitment to standardised reporting methodologies, international comparisons are complex

    Evidence for the existence of nonradial solar oscillations: Solar rotation

    Get PDF
    The coherent properties of six oscillations over a two week period in which seven days of equatorial diameter measurements were analyzed, are confirmed by the addition of an extra day of data. The two large 1 (the principal order number in the spherical harmonic expansion of the eigenfunction) g-mode oscillations may be candidates for the slowly rotating mode locked structures. For the four low frequency p-modes, periodic nature is observed in the daily power levels, varying with periods of several days. This is attributed to beating between rotationally split m states for a given 1 value. Nonradial modes are a major contribution to the observed solar oscillations. The nonradial character of the observed modes allows the depth dependence of the internal solar rotation to be investigated

    On the Spectra of Real and Complex Lam\'e Operators

    Get PDF
    We study Lam\'e operators of the form L=d2dx2+m(m+1)ω2(ωx+z0),L = -\frac{d^2}{dx^2} + m(m+1)\omega^2\wp(\omega x+z_0), with mNm\in\mathbb{N} and ω\omega a half-period of (z)\wp(z). For rectangular period lattices, we can choose ω\omega and z0z_0 such that the potential is real, periodic and regular. It is known after Ince that the spectrum of the corresponding Lam\'e operator has a band structure with not more than mm gaps. In the first part of the paper, we prove that the opened gaps are precisely the first mm ones. In the second part, we study the Lam\'e spectrum for a generic period lattice when the potential is complex-valued. We concentrate on the m=1m=1 case, when the spectrum consists of two regular analytic arcs, one of which extends to infinity, and briefly discuss the m=2m=2 case, paying particular attention to the rhombic lattices

    Weak measurement and control of entanglement generation

    Full text link
    In this paper we show how weak joint measurement and local feedback can be used to control entanglement generation between two qubits. To do this, we make use of a decoherence free subspace (DFS). Weak measurement and feedback can be used to drive the system into this subspace rapidly. Once within the subspace, feedback can generate entanglement rapidly, or turn off entanglement generation dynamically. We also consider, in the context of weak measurement, some of differences between purification and generating entanglement

    The AMBRE Project: Stellar Parameterisation of the ESO:UVES archived spectra

    Full text link
    The AMBRE Project is a collaboration between the European Southern Observatory (ESO) and the Observatoire de la Cote d'Azur (OCA) that has been established in order to carry out the determination of stellar atmospheric parameters for the archived spectra of four ESO spectrographs. The analysis of the UVES archived spectra for their stellar parameters has been completed in the third phase of the AMBRE Project. From the complete ESO:UVES archive dataset that was received covering the period 2000 to 2010, 51921 spectra for the six standard setups were analysed. The AMBRE analysis pipeline uses the stellar parameterisation algorithm MATISSE to obtain the stellar atmospheric parameters. The synthetic grid is currently constrained to FGKM stars only. Stellar atmospheric parameters are reported for 12,403 of the 51,921 UVES archived spectra analysed in AMBRE:UVES. This equates to ~23.9% of the sample and ~3,708 stars. Effective temperature, surface gravity, metallicity and alpha element to iron ratio abundances are provided for 10,212 spectra (~19.7%), while at least effective temperature is provided for the remaining 2,191 spectra. Radial velocities are reported for 36,881 (~71.0%) of the analysed archive spectra. Typical external errors of sigmaTeff~110dex, sigmalogg~0.18dex, sigma[M/H]~0.13dex, and sigma[alpha/Fe]~0.05dex with some reported variation between giants and dwarfs and between setups are reported. UVES is used to observe an extensive collection of stellar and non-stellar objects all of which have been included in the archived dataset provided to OCA by ESO. The AMBRE analysis extracts those objects which lie within the FGKM parameter space of the AMBRE slow rotating synthetic spectra grid. Thus by homogeneous blind analysis AMBRE has successfully extracted and parameterised the targeted FGK stars (23.9% of the analysed sample) from within the ESO:UVES archive.Comment: 19 pages, 16 figures, 11 table

    Spheromak formation and sustainment studies at the sustained spheromak physics experiment using high-speed imaging and magnetic diagnostics

    Get PDF
    A high-speed imaging system with shutter speeds as fast as 2 ns and double frame capability has been used to directly image the formation and evolution of the sustained spheromak physics experiment (SSPX) [E. B. Hooper et al., Nucl. Fusion 39, 863 (1999)]. Reproducible plasma features have been identified with this diagnostic and divided into three groups, according to the stage in the discharge at which they occur: (i) breakdown and ejection, (ii) sustainment, and (iii) decay. During the first stage, plasma descends into the flux conserver shortly after breakdown and a transient plasma column is formed. The column then rapidly bends and simultaneously becomes too dim to photograph a few microseconds after formation. It is conjectured here that this rapid bending precedes the transfer of toroidal to poloidal flux. During sustainment, a stable plasma column different from the transient one is observed. It has been possible to measure the column diameter and compare it to CORSICA [A. Tarditi et al., Contrib. Plasma Phys. 36, 132 (1996)], a magnetohydrodynamic equilibrium reconstruction code which showed good agreement with the measurements. Elongation and velocity measurements were made of cathode patterns also seen during this stage, possibly caused by pressure gradients or E×B drifts. The patterns elongate in a toroidal-only direction which depends on the magnetic-field polarity. During the decay stage the column diameter expands as the current ramps down, until it eventually dissolves into filaments. With the use of magnetic probes inserted in the gun region, an X point which moved axially depending on current level and toroidal mode number was observed in all the stages of the SSPX plasma discharge

    Z -> b\bar{b} Versus Dynamical Electroweak Symmetry Breaking involving the Top Quark

    Full text link
    In models of dynamical electroweak symmetry breaking which sensitively involve the third generation, such as top quark condensation, the effects of the new dynamics can show up experimentally in Z->b\bar{b}. We compare the sensitivity of Z->b\bar{b} and top quark production at the Tevatron to models of the new physics. Z->b\bar{b} is a relatively more sensitive probe to new strongly coupled U(1) gauge bosons, while it is generally less sensitive a probe to new physics involving color octet gauge bosons as is top quark production itself. Nonetheless, to accomodate a significant excess in Z->b\bar{b} requires choosing model parameters that may be ruled out within run I(b) at the Tevatron.Comment: LaTex file, 19 pages + 2 Figs., Fermilab-Pub-94/231-
    corecore