81,791 research outputs found
SU(3)/SU(2): the simplest Wess-Zumino-Witten term
The observation that SU(3)/SU(2) ~ S^5 implies the existence of a
particularly simple quantized topological action, or Wess-Zumino-Witten (WZW)
term. This action plays an important role in anomaly cancellation in extensions
of the Standard Model electroweak sector. A closed form is presented for the
action coupled to arbitrary gauge fields. The action is shown to be equivalent
to a limit of the WZW term for SU(3) x SU(3) / SU(3). By reduction of SU(3) x
U(1) / SU(2) x U(1) to SU(2) x U(1) / U(1), the construction gives a
topological derivation of the WZW term for the Standard Model Higgs field.Comment: 11 pages, 1 figure; references adde
L-band, 1.2 m parabolic antenna-noise temperature measurement
Extensive antenna-noise temperature measurements at 1.6 GHz (L-band) were made using a 1.2 m (4 ft. diameter) parabolic dish antenna mounted on the flying bridge of a modern 15,690-ton, commercial-container ship. Both in-harbor and at-sea radiometer measurements were made that indicated a steady background, antenna-noise temperature value slightly less than 70 degrees Kelvin (K) at elevation angles of 5 percent, and greater, at 1.6 GHz. A comparison of theoretical and measured values indicate excellent agreement within about 5K for at-sea data. These measurements are helpful to RF equipment designers of maritime, L-band shipboard terminals for operation with the two, geostationary, maritime satellites, Marisat-A and -B
Implementation experiences of NASTRAN on CDC CYBER 74 SCOPE 3.4 operating system
The implementation of the NASTRAN system on the CDC CYBER 74 SCOPE 3.4 Operating System is described. The flexibility of the NASTRAN system made it possible to accomplish the change with no major problems. Various sizes of benchmark and test problems, ranging from two hours to less than one minute CP time were run on the CDC CYBER SCOPE 3.3, Univac EXEC-8, and CDC CYBER SCOPE 3.4. The NASTRAN installation deck is provided
Opportunities for use of exact statistical equations
Exact structure function equations are an efficient means of obtaining
asymptotic laws such as inertial range laws, as well as all measurable effects
of inhomogeneity and anisotropy that cause deviations from such laws. "Exact"
means that the equations are obtained from the Navier-Stokes equation or other
hydrodynamic equations without any approximation. A pragmatic definition of
local homogeneity lies within the exact equations because terms that explicitly
depend on the rate of change of measurement location appear within the exact
equations; an analogous statement is true for local stationarity. An exact
definition of averaging operations is required for the exact equations. Careful
derivations of several inertial range laws have appeared in the literature
recently in the form of theorems. These theorems give the relationships of the
energy dissipation rate to the structure function of acceleration increment
multiplied by velocity increment and to both the trace of and the components of
the third-order velocity structure functions. These laws are efficiently
derived from the exact velocity structure function equations. In some respects,
the results obtained herein differ from the previous theorems. The
acceleration-velocity structure function is useful for obtaining the energy
dissipation rate in particle tracking experiments provided that the effects of
inhomogeneity are estimated by means of displacing the measurement location.Comment: accepted by Journal of Turbulenc
Solar-cycle variation of the sound-speed asphericity from GONG and MDI data 1995-2000
We study the variation of the frequency splitting coefficients describing the
solar asphericity in both GONG and MDI data, and use these data to investigate
temporal sound-speed variations as a function of both depth and latitude during
the period from 1995-2000 and a little beyond. The temporal variations in even
splitting coefficients are found to be correlated to the corresponding
component of magnetic flux at the solar surface. We confirm that the
sound-speed variations associated with the surface magnetic field are
superficial. Temporally averaged results show a significant excess in sound
speed around 0.92 solar radii and latitude of 60 degrees.Comment: To be published in MNRAS, accepted July 200
A Correlation Between Changes in Solar Luminosity and Differential Radius Measurements
Solar luminosity variations occurring during solar cycle 21 can be attributed in large part to the presence of sunspots and faculae. Nevertheless, there remains a residual portion of the luminosity variation distinctly unaccounted for by these phenomena of solar activity. At the Santa Catalina Laboratory for Experimental Relativity by Astrometry (SCLERA), observations of the solar limb are capable of detecting changes in the solar limb darkening function by monitoring a quantity known as the differential radius. These observations are utilized in such a way that the effects of solar activity are minimized in order to reveal the more fundamental structure of the photosphere. The results of observations made during solar cycle 21 at various solar latitudes indicate that a measurable change did occur in the global photospheric limb darkening function. It is proposed that the residual luminosity change is associated in part with this change in limb darkening
Aircraft measurement of radio frequency noise at 121.5 MHz, 243 MHz and 406 MHz
An airborne survey measurement of terrestrial radio-frequency noise over U.S. metropolitan areas was carried out at 121.5, 243 and 406 MHz with horizontal-polarization monopole antennas. Flights were at 25,000 feet altitude. Radio-noise measurements, expressed in equivalent antenna-noise temperature, indicate a steady-background noise temperature of 572,000 K, at 121.5 MHz, during daylight over New York City. This data is helpful in compiling radio-noise temperature maps; in turn useful for designing satellite-aided, emergency-distress search and rescue communication systems
Development of optical coatings for cos thin film solar cells third quarterly report, jun. 1 - aug. 1, 1965
Sputtering of glass coatings on cadmium sulfide thin film solar cell
- …