19,800 research outputs found

    The cell cycle program of polypeptide labeling in Chlamydomonas reinhardtii

    Get PDF
    The cell cycle program of polypeptide labeling in syndhronous cultures of wild-type Chlamydomonas reinhardtii was analyzed by pulse-labeling cells with 35SO4 = or [3H]arginine at different cell cycle stages. Nearly 100 labeled membrane and soluble polypeptides were resolved and studied using one-dimensional sodium dodecyl sulfate (SDS)- polyacrylamide gel electrophoresis. The labeling experiments produced the following results. (a) Total 35SO4 = and [3H]arginine incorporation rates varied independently throughout the cell cycle. 35SO4 = incorporation was highest in the mid-light phase, while [3H]arginine incorporation peaked in the dark phase just before cell division. (b) The relative labeling rate for 20 of 100 polypeptides showed significant fluctuations (3-12 fold) during the cell cycle. The remaining polypeptides were labeled at a rate commensurate with total 35SO4 = or [3H]arginine incorporation. The polypeptides that showed significant fluctuations in relative labeling rates served as markers to identify cell cycle stages. (c) The effects of illumination conditions on the apparent cell cycle stage-specific labeling of polypeptides were tested. Shifting light-grown asynchronous cells to the dark had an immediate and pronounced effect on the pattern of polypeptide labeling, but shifting dark-phase syndhronous cells to the light had little effect. The apparent cell cycle variations in the labeling of ribulose 1,5-biphosphate (RUBP)-carboxylase were strongly influenced by illumination effects. (d) Pulse-chase experiments with light-grown asynchronous cells revealed little turnover or inter- conversion of labeled polypeptides within one cell generation, meaning that major polypeptides, whether labeled in a stage-specific manner or not, do not appear transiently in the cell cycle of actively dividing, light-grown cells. The cell cycle program of labeling was used to analyze effects of a temperature-sensitive cycle blocked (cb) mutant. A synchronous culture of ts10001 was shifted to restrictive temperature before its block point to prevent it from dividing. The mutant continued its cell cycle program of polypeptide labeling for over a cell generation, despite its inability to divide

    Transciptome Analysis Illuminates the Nature of the Intracellular Interaction in a Vertebrate-Algal Symbiosis

    Get PDF
    During embryonic development, cells of the green alga Oophila amblystomatis enter cells of the salamander Ambystoma maculatum forming an endosymbiosis. Here, using de novo dual-RNA seq, we compared the host salamander cells that harbored intracellular algae to those without algae and the algae inside the animal cells to those in the egg capsule. This two-by-two-way analysis revealed that intracellular algae exhibit hallmarks of cellular stress and undergo a striking metabolic shift from oxidative metabolism to fermentation. Culturing experiments with the alga showed that host glutamine may be utilized by the algal endosymbiont as a primary nitrogen source. Transcriptional changes in salamander cells suggest an innate immune response to the alga, with potential attenuation of NF-κB, and metabolic alterations indicative of modulation of insulin sensitivity. In stark contrast to its algal endosymbiont, the salamander cells did not exhibit major stress responses, suggesting that the host cell experience is neutral or beneficial

    Co-Cultures of Oophila Amblystomatis Between Ambystoma Maculatum and Ambystoma Gracile Hosts Show Host-Symbiont Fidelity

    Get PDF
    A unique symbiosis occurs between embryos of the spotted salamander (Ambystoma maculatum) and a green alga (Oophila amblystomatis). Unlike most vertebrate host-symbiont relationships, which are ectosymbiotic, A. maculatum exhibits both an ecto- and an endo-symbiosis, where some of the green algal cells living inside egg capsules enter embryonic tissues as well as individual salamander cells. Past research has consistently categorized this symbiosis as a mutualism, making this the first example of a “beneficial” microbe entering vertebrate cells. Another closely related species of salamander, Ambystoma gracile, also harbors beneficial Oophila algae in its egg capsules. However, our sampling within the A. gracile range consistently shows this to be a strict ectosymbiotic interaction—with no sign of tissue or presumably cellular entry. In this study we swapped cultured algae derived from intracapsular fluid of different salamander hosts to test the fidelity of tissue entry in these symbioses. Both A. maculatum and A. gracile embryos were raised in cultures with their own algae or algae cultured from the other host. Under these in vitro culture conditions A. maculatum algae will enter embryonic A. maculatum tissues. Additionally, although at a much lower frequency, A. gracile derived algae will also enter A. maculatum host tissues. However, neither Oophila strain enters A. gracile hosts in these co-culture conditions. These data reveal a potential host-symbiont fidelity that allows the unique endosymbiosis to occur in A. maculatum, but not in A. gracile. However, preliminary trials in our study found that persistent endogenous A. maculatum algae, as opposed to the cultured algae used in subsequent trials, enters host tissues at a higher frequency. An analysis of previously published Oophila transcriptomes revealed dramatic differences in gene expression between cultured and intracapsular Oophila. These include a suite of genes in protein and cell wall synthesis, photosynthesis, central carbon metabolism suggesting the intracapsular algae are assimilating ammonia for nitrogen metabolism and may be undergoing a life-cycle transition. Further refinements of these co-culture conditions could help determine physiological differences between cultured and endogenous algae, as well as rate-limiting cues provided for the alga by the salamander

    Charge-transfer exciton in La2CuO4 probed with resonant inelastic x-ray scattering

    Full text link
    We report a high-resolution resonant inelastic x-ray scattering study of La2CuO4. A number of spectral features are identified that were not clearly visible in earlier lower-resolution data. The momentum dependence of the spectral weight and the dispersion of the lowest energy excitation across the insulating gap have been measured in detail. The temperature dependence of the spectral features was also examined. The observed charge transfer edge shift, along with the low dispersion of the first charge transfer excitation are attributed to the lattice motion being coupled to the electronic system. In addition, we observe a dispersionless feature at 1.8 eV, which is associated with a d-d crystal field excitation.Comment: 5 pages, 4 figure

    Environmental Marine Geoscience 4. Georgia Basin: Seabed Features and Marine Geohazards

    Get PDF
    A multibeam bathymetric swath-mapping program of the Strait of Georgia has provided a 5-m resolution map of the seabed. Numerous geological features of the basin, some of which are considered geohazards, are clearly defined. During the Olympia interglacial period most of the basin was filled with sediment and then subsequently excavated during the Fraser Glaciation, except for a group of isolated banks; the southern basin was partially filled by the pro-grading Fraser River Delta during the Holocene. Marine geohazards that exist in this seismically active region include, slope stability features, active faults, gas pockmarks, and large migrating sedimentary bedforms. Other features, such as sponge reefs, have developed because of the glacial history and dynamic oceanography of the basin and provide unique and critical habitats to marine species. SUMMAIRE Un programme de levé par balayage bathymétrique a faisceaux multiples dans le détroit de Georgie a permis la production d'une carte du fond marin d'une résolution de 5 m. De nombreux éléments géologiques du bassin y sont clairement définis, dont certains constituent des géorisques clairement définis. Durant la période interglaciaire d'Olympia, la plus grande partie du bassin a été rempli de sédiments, lesquels ont par la suite été excavés durant la glaciation de Fraser, sauf un groupe de bancs isolés; la partie sud du bassin a été partiellement remplie par progradation du delta de la rivière Fraser à l'Holocène. Les géorisques marins de cette région d'activité sismique comprennent certains éléments de stabilité des talus, des failles actives, des cratères d'échappement de gaz, et de grands éléments topographiques sédimentaires migrants. D'autres éléments, comme des récifs de spongiaires se sont développés à cause de l'histoire glaciaire et de la dynamique océanographique du bassin, constituent un habitat essentiel pour des espèces marines

    Doping dependence of charge-transfer excitations in La_{2-x}Sr_xCuO_4

    Full text link
    We report a resonant inelastic x-ray scattering (RIXS) study of the doping dependence of charge-transfer excitations in La2xSrxCuO4\rm La_{2-x}Sr_xCuO_4. The mome ntum dependence of these charge excitations are studied over the whole Brillouin zone in underdoped (x=0.05) and optimally doped (x=0.17) samples, and compared with that of the undoped (x=0) sample. We observe a large change in the RIXS spectra between the x=0 and x=0.17 sample, while the RIXS spectra of the x=0.05 sample are similar to that of the x=0 sample. The most prominent effect of doped-holes on the charge excitation spectra is the appearance of a continuum of intensity, which exhibits a strong momentum-dependence below 2 eV. For the x=0.17 sample, some of the spectral weight from the lowest-lying charge-transfer excitation of the undoped compound is transferred to the continuum intensity below the gap, in agreement with earlier optical studies. However, the higher energy charge-transfer excitation carries significant spectral weight even for the x=0.17 sample. The doping dependence of the dispersion of this charge-transfer excitation is also discussed and compared with recent theoretical calculations.Comment: 7 pages, 6 figures, to appear in Phys. Rev.

    Observation of a 500meV Collective Mode in La2x_{2-x}Srx_xCuO4_4 and Nd2_2CuO4_4

    Full text link
    Utilizing resonant inelastic x-ray scattering, we report a previously unobserved mode in the excitation spectrum of La2x_{2-x}Srx_xCuO4_4 at 500 meV. The mode is peaked around the (π\pi,0) point in reciprocal space and is observed to soften, and broaden, away from this point. Samples with x=0, 0.01, 0.05, and 0.17 were studied. The new mode is found to be rapidly suppressed with increasing Sr content and is absent at xx=0.17, where it is replaced by a continuum of excitations. The peak is only observed when the incident x-ray polarization is normal to the CuO planes and is also present in Nd2_2CuO4_4. We suggest possible explanations for this excitation.Comment: 5 pages, 5 figure

    Magnetic nature of the 500 meV peak in La2xSrxCuO4\rm La_{2-x}Sr_{x}CuO_4 observed with resonant inelastic x-ray scattering at the Cu KK-edge

    Full text link
    We present a comprehensive study of the temperature and doping dependence of the 500 meV peak observed at q=(π,0){\bf q}=(\pi,0) in resonant inelastic x-ray scattering (RIXS) experiments on La2CuO4\rm La_2CuO_4. The intensity of this peak persists above the N\'eel temperature (TN_{N}=320 K), but decreases gradually with increasing temperature, reaching zero at around T=500 K. The peak energy decreases with temperature in close quantitative accord with the behavior of the two-magnon B1g\rm B_{1g} Raman peak in La2CuO4\rm La_2CuO_4, and with suitable rescaling, agrees with the Raman peak shifts in EuBa2Cu3O6\rm EuBa_2Cu_3O_6 and K2NiF4\rm K_2NiF_4. The overall dispersion of this excitation in the Brillouin zone is found to be in agreement with theoretical calculations for a two-magnon excitation. Upon doping, the peak intensity decreases analogous to the Raman mode intensity and appears to track the doping dependence of the spin correlation length. Taken together, these observations strongly suggest that the 500 meV mode is magnetic in character and is likely a two-magnon excitation.Comment: 13 pages, 9 figure

    Role of anisotropy in the spin-dimer compound BaCuSi2O6

    Full text link
    We present results of magnetisation and electron paramagnetic resonance experiments on the spin-dimer system BaCuSi2O6. Evidence indicates that the origin of anisotropic terms in the spin Hamiltonian is from magnetic dipolar interactions. Axial symmetry-breaking is on a very small energy scale of ~11 mK, confirming Bose Einstein condensation critical scaling over an extended temperature range in the vicinity of the quantum critical point.Comment: 4 pages, 4 figure

    Ultrasound image reconstruction from compressed measurements using approximate message passing

    Get PDF
    corecore