786 research outputs found

    The effect of EMAT coil geometry on the Rayleigh wave frequency behaviour

    Get PDF
    Understanding of optimal signal generation and frequency content for electromagnetic acoustic transducers (EMATs) is key to improving their design and signal to noise ratio. Linear and meander coil designs are fairly well understood, but other designs such as racetrack or focused coils have recently been proposed. Multiple transmission racetrack coil EMATs, with focused and unfocused designs, were constructed. The optimum driving frequency for maximum detected signal was found to range between 1.1 and 1.4 MHz on aluminium for a 1.5 mm width coil. A simple analytical model based on the instantaneous velocity of a wave predicts a maximum signal at 1.44 MHz. Modelling the detection coil as a spatial square wave agrees with this, and predicts a general relation of fP = 0.761v / L between the optimum frequency fP , the wave velocity v, and the coil width L. A time domain model of the detection coil predicts a 1.4 to 1.5 MHz peak for continuous wave excitation, with a frequency that decreases as the length of the wavepacket is decreased, consistent with the experimental data. Linear coil modelling using the same technique is shown to be consistent with previous work, with improving detection at lower wave frequencies, and signal minima at every integer multiple of the wavelength. Finite Element Analysis (FEA) is used to model the effects of the spatial width of the racetrack generation coil and focused geometry, and no significant difference is found between the focused and the unfocused EMAT response. This highlights the importance of designing the EMAT coil for the correct lift-off and desired frequency of operation

    Genome-wide association mapping reveals novel genes associated with coleoptile length in a worldwide collection of barley

    Get PDF
    Background Drought is projected to become more frequent and severe in a changing climate, which requires deep sowing of crop seeds to reach soil moisture. Coleoptile length is a key agronomic trait in cereal crops such as barley, as long coleoptiles are linked to drought tolerance and improved seedling establishment under early water-limited growing conditions. Results In this study, we detected large genetic variation in a panel of 328 diverse barley (Hordeum vulgare L.) accessions. To understand the overall genetic basis of barley coleoptile length, all accessions were germinated in the dark and phenotyped for coleoptile length after 2 weeks. The investigated barleys had significant variation for coleoptile length. We then conducted genome-wide association studies (GWASs) with more than 30,000 molecular markers and identified 8 genes and 12 intergenic loci significantly associated with coleoptile length in our barley panel. The Squamosa promoter-binding-like protein 3 gene (SPL3) on chromosome 6H was identified as a major candidate gene. The missense variant on the second exon changed serine to alanine in the conserved SBP domain, which likely impacted its DNA-binding activity. Conclusion This study provides genetic loci for seedling coleoptile length along with candidate genes for future potential incorporation in breeding programmes to enhance early vigour and yield potential in water-limited environments

    Insights into oxidized lipid modification in barley roots as an adaptation mechanism to salinity stress

    Get PDF
    Lipidomics is an emerging technology, which aims at the global characterization and quantification of lipids within biological matrices including biofluids, cells, whole organs and tissues. The changes in individual lipid molecular species in stress treated plant species and different cultivars can indicate the functions of genes affecting lipid metabolism or lipid signaling. Mass spectrometry–based lipid profiling has been used to track the changes of lipid levels and related metabolites in response to salinity stress. We have developed a comprehensive lipidomics platform for the identification and direct qualification and/or quantification of individual lipid species, including oxidized lipids, which enables a more systematic investigation of peroxidation of individual lipid species in barley roots under salinity stress. This new lipidomics approach has improved with an advantage of analyzing the composition of acyl chains at the molecular level, which facilitates to profile precisely the 18:3-containing diacyl-glycerophosphates and allowed individual comparison of lipids across varieties. Our findings revealed a general decrease in most of the galactolipids in plastid membranes, and an increase of glycerophospholipids and acylated steryl glycosides, which indicate that plastidial and extraplastidial membranes in barley roots ubiquitously tend to form a hexagonal II (HII) phase under salinity stress. In addition, salt-tolerant and salt-sensitive cultivars showed contrasting changes in the levels of oxidized membrane lipids. These results support the hypothesis that salt-induced oxidative damage to membrane lipids can be used as an indication of salt stress tolerance in barley

    Opportunities for improving waterlogging tolerance in cereal crops—Physiological traits and genetic mechanisms

    Get PDF
    Waterlogging occurs when soil is saturated with water, leading to anaerobic conditions in the root zone of plants. Climate change is increasing the frequency of waterlogging events, resulting in considerable crop losses. Plants respond to waterlogging stress by adventitious root growth, aerenchyma formation, energy metabolism, and phytohormone signalling. Genotypes differ in biomass reduction, photosynthesis rate, adventitious roots development, and aerenchyma formation in response to waterlogging. We reviewed the detrimental effects of waterlogging on physiological and genetic mechanisms in four major cereal crops (rice, maize, wheat, and barley). The review covers current knowledge on waterlogging tolerance mechanism, genes, and quantitative trait loci (QTL) associated with waterlogging tolerance-related traits, the conventional and modern breeding methods used in developing waterlogging tolerant germplasm. Lastly, we describe candidate genes controlling waterlogging tolerance identified in model plants Arabidopsis and rice to identify homologous genes in the less waterlogging-tolerant maize, wheat, and barley

    De novo transcriptome assembly and analysis of differentially expressed genes of two barley genotypes reveal root-zone-specific responses to salt exposure

    Get PDF
    Plant roots are the first organs sensing and responding to salinity stress, manifested differentially between different root types, and also at the individual tissue and cellular level. High genetic diversity and the current lack of an assembled map-based sequence of the barley genome severely limit barley research potential. We used over 580 and 600 million paired-end reads, respectively, to create two de novo assemblies of a barley landrace (Sahara) and a malting cultivar (Clipper) with known contrasting responses to salinity. Generalized linear models were used to statistically access spatial, treatment-related, and genotype-specific responses. This revealed a spatial gene expression gradient along the barley root, with more differentially expressed transcripts detected between different root zones than between treatments. The root transcriptome also showed a gradual transition from transcripts related to sugar-mediated signaling at the root meristematic zone to those involved in cell wall metabolism in the elongation zone, and defense response-related pathways toward the maturation zone, with significant differences between the two genotypes. The availability of these additional transcriptome reference sets will serve as a valuable resource to the cereal research community, and may identify valuable traits to assist in breeding programmes

    Multi-locus genome-wide association studies reveal novel alleles for flowering time under vernalisation and extended photoperiod in a barley MAGIC population

    Get PDF
    Optimal flowering time has a major impact on grain yield in crop species, including the globally important temperate cereal crop barley (Hordeum vulgare L.). Understanding the genetics of flowering is a key avenue to enhancing yield potential. Although bi-parental populations were used intensively to map genes controlling flowering, their lack of genetic diversity requires additional work to obtain desired gene combinations in the selected lines, especially when the two parental cultivars did not carry the genes. Multi-parent mapping populations, which use a combination of four or eight parental cultivars, have higher genetic and phenotypic diversity and can provide novel genetic combinations that cannot be achieved using bi-parental populations. This study uses a Multi-parent advanced generation intercross (MAGIC) population from four commercial barley cultivars to identify genes controlling flowering time in different environmental conditions. Genome-wide association studies (GWAS) were performed using 5,112 high-quality markers from Diversity Arrays Technology sequencing (DArT-seq), and Kompetitive allele-specific polymerase chain reaction (KASP) genetic markers were developed. Phenotypic data were collected from fifteen different field trials for three consecutive years. Planting was conducted at various sowing times, and plants were grown with/without additional vernalisation and extended photoperiod treatments. This study detected fourteen stable regions associated with flowering time across multiple environments. GWAS combined with pangenome data highlighted the role of CEN gene in flowering and enabled the prediction of different CEN alleles from parental lines. As the founder lines of the multi-parental population are elite germplasm, the favourable alleles identified in this study are directly relevant to breeding, increasing the efficiency of subsequent breeding strategies and offering better grain yield and adaptation to growing conditions

    Genetic solutions through breeding counteract climate change and secure barley production in Australia

    Get PDF
    Climate changes threaten global sustainable food supply by reducing crop yield. Estimates of future crop production under climate change have rarely considered the capacity of genetic improvement in breeding high-yielding and stress-tolerant crop varieties. We believe that technological advancements and developing climate-resilient crop varieties may offset the adverse effects of climate change. In this study, we examined the historical record of barley breeding and yield, and the trends of climate changes over the past 70 years in Australia. We related the selection of fast development varieties to yield improvement, and revealed the genetic connections of fast development and yield potential through genome-wide association studies. Historical records show that Australia's barley yield has experienced a steady growth despite that the seasonal production window has been shortened due to increased risk of frost damage at flowering stage and terminal heat during maturity since the 1970s. The increase in yield is largely the result of higher yield capacity of the more recently developed varieties that develop faster to counteract the impact of increased terminal heat. We also show that the changing temperature may soon reach a critical point that dramatically changes the barley flowering behaviour to impact yield by pushing its growth beyond the seasonal production window to face increasing frost damage. For the first time, we provide evidence that the effects of climate change on crop production might be less severe than what is currently believed because the advancement of technologies and development of climate-resilient crop varieties may mitigate the adverse effect of climate change to some extent. The greater use of genetic techniques in crop breeding will play a vital role in sustainable global food production in the era of climate change

    High-mass-resolution MALDI mass spectrometry imaging reveals detailed spatial distribution of metabolites and lipids in roots of barley seedlings in response to salinity stress

    Get PDF
    Introduction Mass spectrometry imaging (MSI) is a technology that enables the visualization of the spatial distribution of hundreds to thousands of metabolites in the same tissue section simultaneously. Roots are below-ground plant organs that anchor plants to the soil, take up water and nutrients, and sense and respond to external stresses. Physiological responses to salinity are multifaceted and have predominantly been studied using whole plant tissues that cannot resolve plant salinity responses spatially. Objectives This study aimed to use a comprehensive approach to study the spatial distribution and profiles of metabolites, and to quantify the changes in the elemental content in young developing barley seminal roots before and after salinity stress. Methods Here, we used a combination of liquid chromatography–mass spectrometry (LC–MS), inductively coupled plasma mass spectrometry (ICP–MS), and matrix-assisted laser desorption/ionization (MALDI–MSI) platforms to profile and analyze the spatial distribution of ions, metabolites and lipids across three anatomically different barley root zones before and after a short-term salinity stress (150 mM NaCl). Results We localized, visualized and discriminated compounds in fine detail along longitudinal root sections and compared ion, metabolite, and lipid composition before and after salt stress. Large changes in the phosphatidylcholine (PC) profiles were observed as a response to salt stress with PC 34:n showing an overall reduction in salt treated roots. ICP–MS analysis quantified changes in the elemental content of roots with increases of Na+ and decreases of K+ content. Conclusion Our results established the suitability of combining three mass spectrometry platforms to analyze and map ionic and metabolic responses to salinity stress in plant roots and to elucidate tolerance mechanisms in response to abiotic stress, such as salinity stress

    A high-resolution HPLC-QqTOF platform using parallel reaction monitoring for in-depth lipid discovery and rapid profiling

    Get PDF
    Here, we developed a robust lipidomics workflow merging both targeted and untargeted approaches on a single liquid chromatography coupled to quadrupole-time of flight (LC-QqTOF) mass spectrometry platform with parallel reaction monitoring (PRM). PRM assays integrate both untargeted profiling from MS1 scans and targeted profiling obtained from MS/MS data. This workflow enabled the discovery of more than 2300 unidentified features and identification of more than 600 lipid species from 23 lipid classes at the level of fatty acid/long chain base/sterol composition in a barley root extracts. We detected the presence of 142 glycosyl inositol phosphorylceramides (GIPC) with HN(Ac)-HA as the core structure of the polar head, 12 cardiolipins and 17 glucuronosyl diacylglycerols (GlcADG) which have been rarely reported previously for cereal crops. Using a scheduled algorithm with up to 100 precursors multiplexed per duty cycle, the PRM assay was able to achieve a rapid profiling of 291 species based on MS/MS data by a single injection. We used this novel approach to demonstrate the applicability and efficiency of the workflow to study salt stress induced changes in the barley root lipidome. Results show that 221 targeted lipids and 888 unknown features were found to have changed significantly in response to salt stress. This combined targeted and untargeted single workflow approach provides novel applications of lipidomics addressing biological questions

    Evolution of the electronic structure with size in II-VI semiconductor nanocrystals

    Get PDF
    In order to provide a quantitatively accurate description of the band gap variation with sizes in various II-VI semiconductor nanocrystals, we make use of the recently reported tight-binding parametrization of the corresponding bulk systems. Using the same tight-binding scheme and parameters, we calculate the electronic structure of II-VI nanocrystals in real space with sizes ranging between 5 and 80 {\AA} in diameter. A comparison with available experimental results from the literature shows an excellent agreement over the entire range of sizes.Comment: 17 pages, 4 figures, accepted in Phys. Rev.
    • …
    corecore