47 research outputs found
RSPO3 expands intestinal stem cell and niche compartments and drives tumorigenesis
Objective The gross majority of colorectal cancer cases results from aberrant Wnt/ß-catenin signalling through adenomatous polyposis coli (APC) or CTNNB1 mutations. However, a subset of human colon tumours harbour, mutually exclusive with APC and CTNNB1 mutations, gene fusions in RSPO2 or RSPO3, leading to enhanced expression of these R-spondin genes. This suggested that RSPO activation can substitute for the most common mutations as an alternative driver for intestinal cancer. Involvement of RSPO3 in tumour growth was recently shown in RSPO3-fusion-positive xenograft models. The current study determines the extent into which solely a gain in RSPO3 actually functions as a driver of intestinal cancer in a direct, causal fashion, and addresses the in vivo activities of RSPO3 in parallel. Design We generated a conditional Rspo3 transgenic mouse model in which the Rspo3 transgene is expressed upon Cre activity. Cre is provided by cross-breeding with Lgr5-GFP-CreERT2 mice. Results Upon in vivo Rspo3 expression, mice rapidly developed extensive hyperplastic, adenomatous and adenocarcinomatous lesions throughout the intestine. RSPO3 induced the expansion of Lgr5+ stem cells, Paneth cells, non-Paneth cell label-retaining cells and Lgr4+ cells, thus promoting both intestinal stem cell and niche compartments. Wnt/ß-catenin signalling was modestly increased upon Rspo3 expression and mutant Kras synergised with Rspo3 in hyperplastic growth. Conclusions We provide in vivo evidence that RSPO3 stimulates the crypt stem cell and niche compartments and drives rapid intestinal tumorigenesis. This establishes RSPO3 as a potent driver of intestinal cancer and proposes RSPO3 as a candidate target for therapy in patients with colorectal cancer harbouring RSPO3 fusions
Macrophage proliferation distinguishes 2 subgroups of knee osteoarthritis patients
Osteoarthritis (OA) is a leading cause of disability, globally. Despite an emerging role for synovial inflammation in OA pathogenesis, attempts to target inflammation therapeutically have had limited success. A better understanding of the cellular and molecular processes occurring in the OA synovium is needed to develop novel therapeutics. We investigated macrophage phenotype and gene expression in synovial tissue of OA and inflammatory-arthritis (IA) patients. Compared with IA, OA synovial tissue contained higher but variable proportions of macrophages (P < 0.001). These macrophages exhibited an activated phenotype, expressing folate receptor-2 and CD86, and displayed high phagocytic capacity. RNA sequencing of synovial macrophages revealed 2 OA subgroups. Inflammatory-like OA (iOA) macrophages are closely aligned to IA macrophages and are characterized by a cell proliferation signature. In contrast, classical OA (cOA) macrophages display cartilage remodeling features. Supporting these findings, when compared with cOA, iOA synovial tissue contained higher proportions of macrophages (P < 0.01), expressing higher levels of the proliferation marker Ki67 (P < 0.01). These data provide new insight into the heterogeneity of OA synovial tissue and suggest distinct roles of macrophages in pathogenesis. Our findings could lead to the stratification of OA patients for suitable disease-modifying treatments and the identification of novel therapeutic targets
R-spondin-3 promotes proliferation and invasion of breast cancer cells independently of Wnt signaling
We recently identified R-spondin-3 (RSPO3) as a novel driver of breast cancer associating with reduced patient survival, expanding its clinical value as potential therapeutic target that had been recognized mostly for colorectal cancer so far. (Pre)clinical studies exploring RSPO3 targeting in colorectal cancer approach this indirectly with Wnt inhibitors, or directly with anti-RSPO3 antibodies. Here, we address the clinical relevance of RSPO3 in breast cancer and provide insight in the oncogenic activities of RSPO3. Utilizing the RSPO3 breast cancer mouse model, we show that RSPO3 drives the aberrant expansion of luminal progenitor cells expressing cancer stem cell marker CD61, inducing proliferative, poorly differentiated and invasive tumors. Complementary studies with tumor organoids and human breast cancer cell lines demonstrate that RSPO3 consistently promotes the proliferation and invasion of breast cancer cells. Importantly, RSPO3 exerts these oncogenic effects independently of Wnt signaling, rejecting the therapeutic value of Wnt inhibitors in RSPO3-driven breast cancer. Instead, direct RSPO3 targeting effectively inhibited RSPO3-driven growth of breast cancer cells. Conclusively, our data indicate that RSPO3 exerts unfavorable oncogenic effects in breast cancer, enhancing proliferation and malignancy in a Wnt-independent fashion, proposing RSPO3 itself as a valuable therapeutic target in breast cancer
R-spondin-3 is an oncogenic driver of poorly differentiated invasive breast cancer
R-spondins (RSPOs) are influential signaling molecules that promote the Wnt/β-catenin pathway and self-renewal of stem cells. Currently, RSPOs are emerging as clinically relevant oncogenes, being linked to cancer development in multiple organs. Although this has instigated the rapid development and testing of therapeutic antibodies targeting RSPOs, functional evidence that RSPO causally drives cancer has focused primarily on the intestinal tract. Here, we assess the oncogenic capacity of RSPO in breast cancer in a direct fashion by generating and characterizing a novel mouse model with conditional Rspo3 expression in the mammary gland. We also address the prevalence of RSPO gene alterations in breast cancer patients. We found that a quarter of breast cancer patients harbor RSPO2/RSPO3 copy number amplifications, which are associated with lack of steroid hormone receptor expression and reduced patient survival. Foremost, we demonstrate the causal oncogenic capacity of RSPO3 in the breast, as conditional Rspo3 overexpression consistently drives the development of mammary adenocarcinomas in our novel Rspo3 breast cancer model. RSPO3-driven mammary tumors typically show poor differentiation, areas of epithelial-to-mesenchymal transition, and metastatic potential. Given the reported interplay in the Wnt/β-catenin pathway, we comparatively analyzed RSPO3-driven mouse mammary tumors versus classical WNT1-driven analogues. This revealed that RSPO3-driven tumors are distinct, as the poorly differentiated tumor morphology and metastatic potential were observed in RSPO3-driven tumorigenesis exclusively, further substantiated by differentiating gene expression profiles. Co-expression of Rspo3 and Wnt1 transduced mammary tumors with a mixed phenotype harboring morphological features characteristic of both transgenes. In summary, we report that a quarter of breast cancer patients harbor RSPO2/RSPO3 copy number gains, and these patients have a worse prognosis, whilst providing in vivo evidence that RSPO3 drives poorly differentiated invasive breast cancer in mice. Herewith, we establish RSPO3 as a driver of breast cancer with clinical relevance, proposing RSPO3 as a novel candidate target for therapy in breast cancer
Reverse engineering the anti-MUC1 hybridoma antibody 139H2 by mass spectrometry-based de novo sequencing
Mucin 1 (MUC1) is a transmembrane mucin expressed at the apical surface of epithelial cells at different mucosal surfaces including breast and intestine. In the gastrointestinal tract, MUC1 has a barrier function against bacterial invasion, but can also serve as an entry receptor for pathogenic Salmonella bacteria. Moreover, MUC1 is well known for its aberrant expression and glycosylation in adenocarcinomas The MUC1 extracellular domain contains a variable number of tandem repeats (VNTR) of 20 amino acids, which are heavily O-linked glycosylated.. Monoclonal antibodies against the MUC1 VNTR can be powerful tools because of their multiplicity of binding and possible applications in the diagnosis and treatment of MUC1-expressing cancers. One such antibody is the hybridoma mouse monoclonal 139H2, which is also widely used as a research tool to study non-cancer MUC1. Here we report direct mass spectrometry-based sequencing of hybridoma-derived 139H2 IgG, which enabled reverse engineering of a recombinant 139H2. The performance of the reverse engineered 139H2 IgG and its Fab fragment were validated by comparison to the hybridoma-derived product in Western blot and immunofluorescence microscopy. The reverse engineering of 139H2 allowed us to characterize binding to the VNTR peptide epitope by surface plasmon resonance (SPR) and solve the crystal structure of the 139H2 Fab fragment in complex with the MUC1 VNTR peptide. These analyses reveal the molecular basis for 139H2 binding specificity to MUC1 and its tolerance to O-glycosylation of the VNTR. The available sequence of 139H2 will allow further development of MUC1-related diagnostics, targeting and treatment strategies
Interaction of galectin-3 with MUC1 on cell surface promotes EGFR dimerization and activation in human epithelial cancer cells
Epidermal growth factor receptor (EGFR) is an important regulator of epithelial cell growth and survival in normal and cancerous tissues and is a principal therapeutic target for cancer treatment. EGFR is associated in epithelial cells with the heavily glycosylated transmembrane mucin protein MUC1, a natural ligand of galectin-3 that is overexpressed in cancer. This study reveals that the expression of cell surface MUC1 is a critical enhancer of EGF-induced EGFR activation in human breast and colon cancer cells. Both the MUC1 extracellular and intracellular domains are involved in EGFR activation but the predominant influence comes from its extracellular domain. Binding of galectin-3 to the MUC1 extracellular domain induces MUC1 cell surface polarization and increases MUC1–EGFR association. This leads to a rapid increase of EGFR homo-/hetero-dimerization and subsequently increased, and also prolonged, EGFR activation and signalling. This effect requires both the galectin-3 C-terminal carbohydrate recognition domain and its N-terminal ligand multi-merization domain. Thus, interaction of galectin-3 with MUC1 on cell surface promotes EGFR dimerization and activation in epithelial cancer cells. As MUC1 and galectin-3 are both commonly overexpressed in most types of epithelial cancers, their interaction and impact on EGFR activation likely makes important contribution to EGFR-associated tumorigenesis and cancer progression and may also influence the effectiveness of EGFR-targeted cancer therapy
Recent translational research: Oncogene discovery by insertional mutagenesis gets a new boost
Knowledge of the genes and genetic pathways involved in onco-genesis is essential if we are to identify novel targets for cancer therapy. Insertional mutagenesis in mouse models is among the most efficient tools to detect novel cancer genes. Retrovirus-mediated insertional mutagenesis received a tremendous boost by the availability of the mouse genome sequence and new PCR methods. Application of such advances were limited to lympho-magenesis but are now also being applied to mammary tumourigenesis. Novel transposons that allow insertional muta-genesis studies to be conducted in tumors of any mouse tissue may give cancer gene discovery a further boost
Distinct lung cell signatures define the temporal evolution of diffuse alveolar damage in fatal COVID-19
Background Lung damage in severe COVID-19 is highly heterogeneous however studies with dedicated spatial distinction of discrete temporal phases of diffuse alveolar damage (DAD) and alternate lung injury patterns are lacking. Existing studies have also not accounted for progressive airspace obliteration in cellularity estimates. We used an imaging mass cytometry (IMC) analysis with an airspace correction step to more accurately identify the cellular immune response that underpins the heterogeneity of severe COVID-19 lung disease. Methods Lung tissue was obtained at post-mortem from severe COVID-19 deaths. Pathologist-selected regions of interest (ROIs) were chosen by light microscopy representing the patho-evolutionary spectrum of DAD and alternate disease phenotypes were selected for comparison. Architecturally normal SARS-CoV-2-positive lung tissue and tissue from SARS-CoV-2-negative donors served as controls. ROIs were stained for 40 cellular protein markers and ablated using IMC before segmented cells were classified. Cell populations corrected by ROI airspace and their spatial relationships were compared across lung injury patterns. Findings Forty patients (32M:8F, age: 22–98), 345 ROIs and >900k single cells were analysed. DAD progression was marked by airspace obliteration and significant increases in mononuclear phagocytes (MnPs), T and B lymphocytes and significant decreases in alveolar epithelial and endothelial cells. Neutrophil populations proved stable overall although several interferon-responding subsets demonstrated expansion. Spatial analysis revealed immune cell interactions occur prior to microscopically appreciable tissue injury. Interpretation The immunopathogenesis of severe DAD in COVID-19 lung disease is characterised by sustained increases in MnPs and lymphocytes with key interactions occurring even prior to lung injury is established
RA-MAP, molecular immunological landscapes in early rheumatoid arthritis and healthy vaccine recipients
Rheumatoid arthritis (RA) is a chronic inflammatory disorder with poorly defined aetiology characterised by synovial inflammation with variable disease severity and drug responsiveness. To investigate the peripheral blood immune cell landscape of early, drug naive RA, we performed comprehensive clinical and molecular profiling of 267 RA patients and 52 healthy vaccine recipients for up to 18 months to establish a high quality sample biobank including plasma, serum, peripheral blood cells, urine, genomic DNA, RNA from whole blood, lymphocyte and monocyte subsets. We have performed extensive multi-omic immune phenotyping, including genomic, metabolomic, proteomic, transcriptomic and autoantibody profiling. We anticipate that these detailed clinical and molecular data will serve as a fundamental resource offering insights into immune-mediated disease pathogenesis, progression and therapeutic response, ultimately contributing to the development and application of targeted therapies for RA.</p
Novel methodology to discern predictors of remission and patterns of disease activity over time using rheumatoid arthritis clinical trials data
Objectives To identify predictors of remission and disease activity patterns in patients with rheumatoid arthritis (RA) using individual participant data (IPD) from clinical trials. Methods Phases II and III clinical trials completed between 2002 and 2012 were identified by systematic literature review and contact with UK market authorisation holders. Anonymised baseline and follow-up IPD from non-biological arms were amalgamated. Multiple imputation was used to handle missing outcome and covariate information. Random effects logistic regression was used to identify predictors of remission, measured by the DAS28 score at 6 months. Novel latent class mixed models characterised DAS28 over time.Results IPD of 3290 participants from 18 trials were included. Of these participants, 92% received methotrexate (MTX). Remission rates were estimated at 8.4% (95%CI: 7.4%-9.5%) overall, 17% (95%CI: 14.8%-19.4%) for MTX-naïve early RA patients, and 3.2% (95%CI: 2.4%-4.3%) for those with prior MTX exposure at entry. In prior MTX-exposed patients, lower baseline DAS28 and MTX-re-initiation were associated with remission. In MTX-naïve patients, being young, white, male, with better functional and mental health, lower baseline DAS28 and receiving concomitant glucocorticoids were associated with remission. Three DAS28 trajectory sub-populations were identified in MTX-naïve and MTX-exposed patients. A number of variables were associated with sub-population membership and DAS28 levels within sub-populations. Conclusions Predictors of remission differed between MTX-naïve and prior MTX-exposed patients at entry. Latent class mixed models supported differential non-biologic therapy response, with three distinct trajectories observed in both MTX-naïve and MTX-exposed patients. Findings should be useful when designing future RA trials and interpreting results of biomarker studies. <br/