41 research outputs found

    A transport coefficient: the electrical conductivity

    Full text link
    I describe the lattice determination of the electrical conductivity of the quark gluon plasma. Since this is the first extraction of a transport coefficient with a degree of control over errors, I next use this to make estimates of other transport related quantities using simple kinetic theory formulae. The resulting estimates are applied to fluctuations, ultra-soft photon spectra and the viscosity. Dimming of ultra-soft photons is exponential in the mean free path, and hence is a very sensitive probe of transport.Comment: Talk given in ICPAQGP 2005, SINP, Kolkat

    Control of quantum interference in the quantum eraser

    Full text link
    We have implemented an optical quantum eraser with the aim of studying this phenomenon in the context of state discrimination. An interfering single photon is entangled with another one serving as a which-path marker. As a consequence, the visibility of the interference as well as the which-path information are constrained by the overlap (measured by the inner product) between the which-path marker states, which in a more general situation are non-orthogonal. In order to perform which-path or quantum eraser measurements while analyzing non-orthogonal states, we resort to a probabilistic method for the unambiguous modification of the inner product between the two states of the which-path marker in a discrimination-like process.Comment: Submitted to New Journal of Physics, March 200

    The Time-Energy Uncertainty Relation

    Full text link
    The time energy uncertainty relation has been a controversial issue since the advent of quantum theory, with respect to appropriate formalisation, validity and possible meanings. A comprehensive account of the development of this subject up to the 1980s is provided by a combination of the reviews of Jammer (1974), Bauer and Mello (1978), and Busch (1990). More recent reviews are concerned with different specific aspects of the subject. The purpose of this chapter is to show that different types of time energy uncertainty relation can indeed be deduced in specific contexts, but that there is no unique universal relation that could stand on equal footing with the position-momentum uncertainty relation. To this end, we will survey the various formulations of a time energy uncertainty relation, with a brief assessment of their validity, and along the way we will indicate some new developments that emerged since the 1990s.Comment: 33 pages, Latex. This expanded version (prepared for the 2nd edition of "Time in quantum mechanics") contains minor corrections, new examples and pointers to some additional relevant literatur

    Time of arrival in the presence of interactions

    Get PDF
    We introduce a formalism for the calculation of the time of arrival t at a space point for particles traveling through interacting media. We develop a general formulation that employs quantum canonical transformations from the free to the interacting cases to construct t in the context of the Positive Operator Valued Measures. We then compute the probability distribution in the times of arrival at a point for particles that have undergone reflection, transmission or tunneling off finite potential barriers. For narrow Gaussian initial wave packets we obtain multimodal time distributions of the reflected packets and a combination of the Hartman effect with unexpected retardation in tunneling. We also employ explicitly our formalism to deal with arrivals in the interaction region for the step and linear potentials.Comment: 20 pages including 5 eps figure

    Maximal Accuracy and Minimal Disturbance in the Arthurs-Kelly Simultaneous Measurement Process

    Get PDF
    The accuracy of the Arthurs-Kelly model of a simultaneous measurement of position and momentum is analysed using concepts developed by Braginsky and Khalili in the context of measurements of a single quantum observable. A distinction is made between the errors of retrodiction and prediction. It is shown that the distribution of measured values coincides with the initial state Husimi function when the retrodictive accuracy is maximised, and that it is related to the final state anti-Husimi function (the P representation of quantum optics) when the predictive accuracy is maximised. The disturbance of the system by the measurement is also discussed. A class of minimally disturbing measurements is characterised. It is shown that the distribution of measured values then coincides with one of the smoothed Wigner functions described by Cartwright.Comment: 12 pages, 0 figures. AMS-Latex. Earlier version replaced with final published versio

    CPT-symmetric discrete square well

    Full text link
    A new version of an elementary PT-symmetric square well quantum model is proposed in which a certain Hermiticity-violating end-point interaction leaves the spectrum real in a large domain of couplings λ(1,1)\lambda\in (-1,1). Within this interval we employ the usual coupling-independent operator P of parity and construct, in a systematic Runge-Kutta discrete approximation, a coupling-dependent operator of charge C which enables us to classify our P-asymmetric model as CPT-symmetric or, equivalently, hiddenly Hermitian alias cryptohermitian.Comment: 12 pp., presented to conference PHHQP IX (http://www.math.zju.edu.cn/wjd/

    Time in Quantum Mechanics and Quantum Field Theory

    Full text link
    W. Pauli pointed out that the existence of a self-adjoint time operator is incompatible with the semibounded character of the Hamiltonian spectrum. As a result, people have been arguing a lot about the time-energy uncertainty relation and other related issues. In this article, we show in details that Pauli's definition of time operator is erroneous in several respects.Comment: 20 page
    corecore