353 research outputs found

    Relativistic Chasles' theorem and the conjugacy classes of the inhomogeneous Lorentz group

    Full text link
    This work is devoted to the relativistic generalization of Chasles' theorem, namely to the proof that every proper orthochronous isometry of Minkowski spacetime, which sends some point to its chronological future, is generated through the frame displacement of an observer which moves with constant acceleration and constant angular velocity. The acceleration and angular velocity can be chosen either aligned or perpendicular, and in the latter case the angular velocity can be chosen equal or smaller than than the acceleration. We start reviewing the classical Euler's and Chasles' theorems both in the Lie algebra and group versions. We recall the relativistic generalization of Euler's theorem and observe that every (infinitesimal) transformation can be recovered from information of algebraic and geometric type, the former being identified with the conjugacy class and the latter with some additional geometric ingredients (the screw axis in the usual non-relativistic version). Then the proper orthochronous inhomogeneous Lorentz Lie group is studied in detail. We prove its exponentiality and identify a causal semigroup and the corresponding Lie cone. Through the identification of new Ad-invariants we classify the conjugacy classes, and show that those which admit a causal representative have special physical significance. These results imply a classification of the inequivalent Killing vector fields of Minkowski spacetime which we express through simple representatives. Finally, we arrive at the mentioned generalization of Chasles' theorem.Comment: Latex2e, 49 pages. v2: few typos correcte

    Introduction: 'Tracing entanglements in media history'

    Get PDF
    Introduction to the special issue of Media History on entangled media histories

    Special functions associated to a certain fourth order differential equation

    Full text link
    We develop a theory of "special functions" associated to a certain fourth order differential operator Dμ,ν\mathcal{D}_{\mu,\nu} on R\mathbb{R} depending on two parameters μ,ν\mu,\nu. For integers μ,ν1\mu,\nu\geq-1 with μ+ν2N0\mu+\nu\in2\mathbb{N}_0 this operator extends to a self-adjoint operator on L2(R+,xμ+ν+1dx)L^2(\mathbb{R}_+,x^{\mu+\nu+1}dx) with discrete spectrum. We find a closed formula for the generating functions of the eigenfunctions, from which we derive basic properties of the eigenfunctions such as orthogonality, completeness, L2L^2-norms, integral representations and various recurrence relations. This fourth order differential operator Dμ,ν\mathcal{D}_{\mu,\nu} arises as the radial part of the Casimir action in the Schr\"odinger model of the minimal representation of the group O(p,q)O(p,q), and our "special functions" give KK-finite vectors

    Cross sections for geodesic flows and \alpha-continued fractions

    Full text link
    We adjust Arnoux's coding, in terms of regular continued fractions, of the geodesic flow on the modular surface to give a cross section on which the return map is a double cover of the natural extension for the \alpha-continued fractions, for each α\alpha in (0,1]. The argument is sufficiently robust to apply to the Rosen continued fractions and their recently introduced \alpha-variants.Comment: 20 pages, 2 figure

    A holomorphic representation of the Jacobi algebra

    Full text link
    A representation of the Jacobi algebra h1su(1,1)\mathfrak{h}_1\rtimes \mathfrak{su}(1,1) by first order differential operators with polynomial coefficients on the manifold C×D1\mathbb{C}\times \mathcal{D}_1 is presented. The Hilbert space of holomorphic functions on which the holomorphic first order differential operators with polynomials coefficients act is constructed.Comment: 34 pages, corrected typos in accord with the printed version and the Errata in Rev. Math. Phys. Vol. 24, No. 10 (2012) 1292001 (2 pages) DOI: 10.1142/S0129055X12920018, references update

    Realizations of Causal Manifolds by Quantum Fields

    Get PDF
    Quantum mechanical operators and quantum fields are interpreted as realizations of timespace manifolds. Such causal manifolds are parametrized by the classes of the positive unitary operations in all complex operations, i.e. by the homogenous spaces \D(n)=\GL(\C^n_\R)/\U(n) with n=1n=1 for mechanics and n=2n=2 for relativistic fields. The rank nn gives the number of both the discrete and continuous invariants used in the harmonic analysis, i.e. two characteristic masses in the relativistic case. 'Canonical' field theories with the familiar divergencies are inappropriate realizations of the real 4-dimensional causal manifold \D(2). Faithful timespace realizations do not lead to divergencies. In general they are reducible, but nondecomposable - in addition to representations with eigenvectors (states, particle) they incorporate principal vectors without a particle (eigenvector) basis as exemplified by the Coulomb field.Comment: 36 pages, latex, macros include

    On Non-Abelian Symplectic Cutting

    Full text link
    We discuss symplectic cutting for Hamiltonian actions of non-Abelian compact groups. By using a degeneration based on the Vinberg monoid we give, in good cases, a global quotient description of a surgery construction introduced by Woodward and Meinrenken, and show it can be interpreted in algebro-geometric terms. A key ingredient is the `universal cut' of the cotangent bundle of the group itself, which is identified with a moduli space of framed bundles on chains of projective lines recently introduced by the authors.Comment: Various edits made, to appear in Transformation Groups. 28 pages, 8 figure

    Causal structures and causal boundaries

    Full text link
    We give an up-to-date perspective with a general overview of the theory of causal properties, the derived causal structures, their classification and applications, and the definition and construction of causal boundaries and of causal symmetries, mostly for Lorentzian manifolds but also in more abstract settings.Comment: Final version. To appear in Classical and Quantum Gravit
    corecore