4 research outputs found

    Interleukin 13 (IL-13)-regulated expression of the chondroprotective metalloproteinase ADAM15 is reduced in aging cartilage

    Get PDF
    Objective: The adamalysin metalloproteinase 15 (ADAM15) has been shown to protect against development of osteoarthritis in mice. Here, we have investigated factors that control ADAM15 levels in cartilage. Design: Secretomes from wild-type and Adam15-/- chondrocytes were compared by label-free quantitative mass spectrometry. mRNA was isolated from murine knee joints, either with or without surgical induction of osteoarthritis on male C57BL/6 mice, and the expression of Adam15 and other related genes quantified by RT-qPCR. ADAM15 in human normal and osteoarthritic cartilage was investigated similarly and by fluorescent immunohistochemistry. Cultured HTB94 chondrosarcoma cells were treated with various anabolic and catabolic stimuli, and ADAM15 mRNA and protein levels evaluated. Results: There were no significant differences in the secretomes of chondrocytes from WT and Adam15-/- cartilage. Expression of ADAM15 was not altered in either human or murine osteoarthritic cartilage relative to disease-free controls. However, expression of ADAM15 was markedly reduced upon aging in both species, to the extent that expression in joints of 18-month-old mice was 45-fold lower than in that 4.5-month-old animals. IL-13 increased expression of ADAM15 in HTB94 cells by 2.5-fold, while modulators of senescence and autophagy pathways had no effect. Expression of Il13 in the joint was reduced with aging, suggesting this cytokine may control ADAM15 levels in the joint. Conclusion: Expression of the chondroprotective metalloproteinase ADAM15 is reduced in aging human and murine joints, possibly due to a concomitant reduction in IL-13 expression. We thus propose IL-13 as a novel factor contributing to increased osteoarthritis risk upon aging

    Choosing a Mouse Model of Venous Thrombosis

    No full text

    A marker-independent lineage-tracing system to quantify clonal dynamics and stem cell functionality in cancer tissue

    No full text
    Lineage tracing is a powerful tool that can be used to uncover cell fates. Here, we describe a novel method for the quantitative analysis of clonal dynamics in grafted cancer tissues. The protocol involves the preparation and validation of cells for lineage tracing, establishment of grafts and label induction, analysis of clone-size distribution and fitting of the experimental data to a mathematical tumor growth model. In contrast to other lineage-tracing strategies, the method described here assesses stem cell functionality and infers tumor expansion dynamics independently of molecular markers such as putative cancer stem cell (CSC)-specific genes. The experimental system and analytical framework presented can be used to quantify clonal advantages that specific mutations provide, in both the absence and presence of (targeted) therapeutic agents. This protocol typically takes ~20 weeks to complete from cell line selection to inference of growth dynamics, depending on the grafted cancer growth rate
    corecore