14 research outputs found

    Proteomics Analyses of the Opportunistic Pathogen Burkholderia vietnamiensis Using Protein Fractionations and Mass Spectrometry

    Get PDF
    The main objectives of this work were to obtain a more extensive coverage of the Burkholderia vietnamiensis proteome than previously reported and to identify virulence factors using tandem mass spectrometry. The proteome of B. vietnamiensis was precipitated into four fractions to as extracellular, intracellular, cell surface and cell wall proteins. Two different approaches were used to analyze the proteins. The first was a gel-based method where 1D SDS-PAGE was used for separation of the proteins prior to reverse phase liquid chromatography tandem mass spectrometry (LC-MS/MS). The second method used MudPIT analysis (Multi dimensional Protein Identification Technique), where proteins are digested and separated using cation exchange and reversed phase separations before the MS/MS analysis (LC/LC-MS/MS). Overall, gel-based LC-MS/MS analysis resulted in more protein identifications than the MudPIT analysis. Combination of the results lead to identification of more than 1200 proteins, approximately 16% of the proteins coded from the annotated genome of Burkholderia species. Several virulence factors were detected including flagellin, porin, peroxiredoxin and zinc proteases

    Formation of peptide aggregates during ESI: size, charge, composition, and contributions to noise

    Get PDF
    AbstractIon mobility/time-of-flight techniques have been used to examine the onset of aggregation in model systems of Gly-Xxx (where Xxxx = Ala, Asn, Asp, Gln, Glu, His, Leu, Ser, Thr, and Trp) dipeptides. Under the experimental conditions employed, there is evidence that simple binary and quaternary mixtures of these dipeptides produce clusters containing as many as 16 to 75 peptide units (and 1 to 7 charges). In some systems, cluster compositions appear to come about largely from statistical association of peptide units; other dipeptide mixtures (and generally for small clusters) show evidence for nonstatistical behavior which could arise from some differences in gas-phase or solution thermochemistry. The minimum aggregate size appears to be largely determined by the charge state. Average thresholds for aggregate formation in the z = 2, 3, and 4 charge state families occur at m/z āˆ¼500, 660, and 875, respectively. We briefly consider the idea that aggregates formed during electrospray ionization (ESI) may contribute to the background signal observed in the analysis of complex peptide mixtures

    IRMPD spectroscopy shows that AGG forms an oxazolone b2+ ion.

    No full text
    International audienceInfrared multiple photon dissociation (IRMPD) spectroscopy combined with theoretical vibrational spectra provides a powerful tool for probing structure. This technique has been used to probe the structure of protonated cyclic AG and the b(2)(+) ion from AGG. The experimental spectrum for protonated cyclo AG compares very well with the theoretical spectra for a diketopiperazine. The spectrum corresponds best to a combination of two structures protonation at the alanine and glycine amide oxygens. The experimental spectrum for the b(2)(+) ion from protonated AGG matches best to the theoretical spectrum for an oxazolone structure protonated on the ring nitrogen. In particular, the carbonyl stretching band at 1970 cm(-1) is blue-shifted by approximately 200 cm(-1) compared to the experimental spectrum for protonated cAG, indicating that these two structures are distinct. This is the first time that an IRPD spectrum of a b(2)(+) ion has been obtained and, for this ion, the oxazolone structure proposed based on prior calculations and experiments is confirmed by the spectroscopic method

    Automated Affinity Capture and On-Tip Digestion to Accurately Quantitate <i>in Vivo</i> Deamidation of Therapeutic Antibodies

    No full text
    Deamidation of therapeutic antibodies may result in decreased drug activity and undesirable changes in pharmacokinetics and immunogenicity. Therefore, it is necessary to monitor the deamidation levels [during storage] and after <i>in vivo</i> administration. Because of the complexity of <i>in vivo</i> samples, immuno-affinity capture is widely used for specific enrichment of the target antibody prior to LCā€“MS. However, the conventional use of bead-based methods requires large sample volumes and extensive processing steps. Furthermore, with automation difficulties and extended sample preparation time, bead-based approaches may increase artificial deamidation. To overcome these challenges, we developed an automated platform to perform tip-based affinity capture of antibodies from complex matrixes with rapid digestion and peptide elution into 96-well microtiter plates followed by LCā€“MS analysis. Detailed analyses showed that the new method presents high repeatability and reproducibility with both intra and inter assay CVs < 8%. Using the automated platform, we successfully quantified the levels of deamidation of a humanized monoclonal antibody in cynomolgus monkeys over a time period of 12 weeks after administration. Moreover, we found that deamidation kinetics between <i>in vivo</i> samples and samples stressed <i>in vitro</i> at neutral pH were consistent, suggesting that the <i>in vitro</i> stress test may be used as a method to predict the liability to deamidation of therapeutic antibodies <i>in vivo</i>

    Citizen science in schools: Engaging students in research on urban habitat for pollinators

    No full text
    Citizen science can play an important role in school science education. Citizen science is particularly relevant to addressing current societal environmental sustainability challenges, as it engages the students directly with environmental science and gives students an understanding of the scientific process. In addition, it allows students to observe local representations of global challenges. Here, we report a citizen science programme designed to engage school-age children in real-world scientific research. The programme used standardized methods deployed across multiple schools through scientistā€“school partnerships to engage students with an important conservation problem: habitat for pollinator insects in urban environments. Citizen science programmes such as the programme presented here can be used to enhance scientific literacy and skills. Provided key challenges to maintain data quality are met, this approach is a powerful way to contribute valuable citizen science data for understudied, but ecologically important study systems, particularly in urban environments across broad geographical areas
    corecore