6 research outputs found

    How Effective are Smart Contract Analysis Tools? Evaluating Smart Contract Static Analysis Tools Using Bug Injection

    Full text link
    Security attacks targeting smart contracts have been on the rise, which have led to financial loss and erosion of trust. Therefore, it is important to enable developers to discover security vulnerabilities in smart contracts before deployment. A number of static analysis tools have been developed for finding security bugs in smart contracts. However, despite the numerous bug-finding tools, there is no systematic approach to evaluate the proposed tools and gauge their effectiveness. This paper proposes SolidiFI, an automated and systematic approach for evaluating smart contract static analysis tools. SolidiFI is based on injecting bugs (i.e., code defects) into all potential locations in a smart contract to introduce targeted security vulnerabilities. SolidiFI then checks the generated buggy contract using the static analysis tools, and identifies the bugs that the tools are unable to detect (false-negatives) along with identifying the bugs reported as false-positives. SolidiFI is used to evaluate six widely-used static analysis tools, namely, Oyente, Securify, Mythril, SmartCheck, Manticore and Slither, using a set of 50 contracts injected by 9369 distinct bugs. It finds several instances of bugs that are not detected by the evaluated tools despite their claims of being able to detect such bugs, and all the tools report many false positivesComment: ISSTA 202

    KEVM: A Complete Semantics of the Ethereum Virtual Machine

    Get PDF
    A developing field of interest for the distributed systems and applied cryptography community is that of smart contracts: self-executing financial instruments that synchronize their state, often through a blockchain. One such smart contract system that has seen widespread practical adoption is Ethereum, which has grown to secure approximately 30 billion USD of currency value and in excess of 300,000 daily transactions. Unfortunately, the rise of these technologies has been marred by a repeated series of security vulnerabilities and high pro file contract failures. To address these failures, the Ethereum community has turned to formal verification and program analysis which show great promise due to the computational simplicity and bounded-time execution inherent to smart contracts. Despite this, no fully formal, rigorous, comprehensive, and executable semantics of the EVM (Ethereum Virtual Machine) currently exists, leaving a lack of rigor on which to base such tools. In this work, we present KEVM, the first fully executable formal semantics of the EVM, the bytecode language in which smart contracts are executed. We create this semantics in a framework for executable semantics, the K framework. We show that our semantics not only passes the official 40,683-test stress test suite for EVM implementations, but also reveals ambiguities and potential sources of error in the existing on-paper formalization of EVM semantics on which our work is based. These properties make KEVM an ideal formal reference implementation against which other implementations can be evaluated. We proceed to argue for a semantics-first formal verification approach for EVM contracts, and demonstrate its practicality by using KEVM to verify practically important properties over the arithmetic operation of an example smart contract and the correct operation of a token transfer function in a second contract. We show that our approach is feasible and not computationally restrictive. We hope that our work serves as the base for the development of a wide range of useful formally derived tools for Ethereum, including model checkers, certified compilers, and program equivalence checkers.Ope

    Securify: practical security analysis of smart contracts

    No full text
    Permissionless blockchains allow the execution of arbitrary programs (called smart contracts), enabling mutually untrusted entities to interact without relying on trusted third parties. Despite their potential, repeated security concerns have shaken the trust in handling billions of USD by smart contracts. To address this problem, we present Securify, a security analyzer for Ethereum smart contracts that is scalable, fully automated, and able to prove contract behaviors as safe/unsafe with respect to a given property. Securify's analysis consists of two steps. First, it symbolically analyzes the contract's dependency graph to extract precise semantic information from the code. Then, it checks compliance and violation patterns that capture sufficient conditions for proving if a property holds or not. To enable extensibility, all patterns are specified in a designated domain-specific language. Securify is publicly released, it has analyzed >18K contracts submitted by its users, and is regularly used to conduct security audits by experts. We present an extensive evaluation of Securify over real-world Ethereum smart contracts and demonstrate that it can effectively prove the correctness of smart contracts and discover critical violations

    Developing secure bitcoin contracts with BitML

    No full text
    We present a toolchain for developing and verifying smart contracts that can be executed on Bitcoin. The toolchain is based on BitML, a recent domain-specific language for smart contracts with a computationally sound embedding into Bitcoin. Our toolchain automatically verifies relevant properties of contracts, among which liquidity, ensuring that funds do not remain frozen within a contract forever. A compiler is provided to translate BitML contracts into sets of standard Bitcoin transactions: executing a contract corresponds to appending these transactions to the blockchain. We assess our toolchain through a benchmark of representative contracts
    corecore