6,172 research outputs found
Calibration update of the COMBO-17 CDFS catalogue
We present an update to the photometric calibration of the COMBO-17 catalogue
on the Extended Chandra Deep Field South, which is now consistent with the
GaBoDS and MUSYC catalogues. As a result, photometric redshifts become slightly
more accurate, with <0.01 rms and little bias in the delta_z/(1+z) of galaxies
with R<21 and of QSOs with R<24. With increasing photon noise the rms of
galaxies reaches 0.02 for R<23 and 0.035 at R~23.5. Consequences for the
rest-frame colours of galaxies at z<1 are discussed.Comment: A&A research note, resubmitted 02 Oct 2008, 4 pages in print forma
Thermomagnetic torques in polyatomic gases
The application of the Scott effect to the dynamics of galactic and stellar rotation is investigated. Efforts were also made to improve the sensitivity and stability of torque measurements and understand the microscopic mechanism that causes the Scott effect
Superconductive magnetic-field-trapping device
An apparatus which enables the establishment of a magnetic field in air that has the same intensity as the ones in ferromagnetic materials is described. The apparatus is comprised of a core of ferromagnetic material and is surrounded by a cylinder made of a material that has superconducting properties when cooled below a critical temperature. A method is provided for producing a magnetic field through the ferromagnetic core. The core can also be split and pulled apart when it is required that the center of the cavity be left empty
Magnetic-flux pump
A magnetic flux pump is described for increasing the intensity of a magnetic field by transferring flux from one location to the magnetic field. The device includes a pair of communicating cavities formed in a block of superconducting material, and a piston for displacing the trapped magnetic flux into the secondary cavity producing a field having an intense flux density
Advances in the Use of Regulatory T-Cells for the Prevention and Therapy of Graft-vs.-Host Disease
Regulatory T (Tregs) cells play a crucial role in immunoregulation and promotion of immunological tolerance. Adoptive transfer of these cells has therefore been of interest in the field of bone marrow and solid organ transplantation, autoimmune diseases and allergy medicine. In bone marrow transplantation, Tregs play a pivotal role in the prevention of graft-verus-host disease (GvHD). This has generated interest in using adoptive Treg cellular therapy in the prevention and treatment of GvHD. There have been several barriers to the feasibility of Treg cellular therapy in the setting of hematopoietic stem cell transplantation (HSCT) which include low Treg concentration in peripheral blood, requiring expansion of the Treg population; instability of the expanded product with loss of FoxP3 expression; and issues related to the purity of the expanded product. Despite these challenges, investigators have been able to successfully expand these cells both in vivo and in vitro and have demonstrated that they can be safely infused in humans for the prevention and treatment of GvHD with no increase in relapse risk or infections risk
Distributed Holistic Clustering on Linked Data
Link discovery is an active field of research to support data integration in
the Web of Data. Due to the huge size and number of available data sources,
efficient and effective link discovery is a very challenging task. Common
pairwise link discovery approaches do not scale to many sources with very large
entity sets. We here propose a distributed holistic approach to link many data
sources based on a clustering of entities that represent the same real-world
object. Our clustering approach provides a compact and fused representation of
entities, and can identify errors in existing links as well as many new links.
We support a distributed execution of the clustering approach to achieve faster
execution times and scalability for large real-world data sets. We provide a
novel gold standard for multi-source clustering, and evaluate our methods with
respect to effectiveness and efficiency for large data sets from the geographic
and music domains
Detection of Anomalous Microwave Emission in the Pleiades Reflection Nebula with WMAP and the COSMOSOMAS Experiment
We present evidence for anomalous microwave emission (AME) in the Pleiades
reflection nebula, using data from the seven-year release of the Wilkinson
Microwave Anisotropy Probe (WMAP) and from the COSMOSOMAS experiment. The flux
integrated in a 1-degree radius around R.A.=56.24^{\circ}, Dec.=23.78^{\circ}
(J2000) is 2.15 +/- 0.12 Jy at 22.8 GHz, where AME is dominant. COSMOSOMAS data
show no significant emission, but allow to set upper limits of 0.94 and 1.58 Jy
(99.7% C.L.) respectively at 10.9 and 14.7 GHz, which are crucial to pin down
the AME spectrum at these frequencies, and to discard any other emission
mechanisms which could have an important contribution to the signal detected at
22.8 GHz. We estimate the expected level of free-free emission from an
extinction-corrected H-alpha template, while the thermal dust emission is
characterized from infrared DIRBE data and extrapolated to microwave
frequencies. When we deduct the contribution from these two components at 22.8
GHz the residual flux, associated with AME, is 2.12 +/- 0.12 Jy (17.7-sigma).
The spectral energy distribution from 10 to 60 GHz can be accurately fitted
with a model of electric dipole emission from small spinning dust grains
distributed in two separated phases of molecular and atomic gas, respectively.
The dust emissivity, calculated by correlating the 22.8 GHz data with
100-micron data, is found to be 4.36+/-0.17 muK/MJy/sr, a value that is rather
low compared with typical values in dust clouds. The physical properties of the
Pleiades nebula indicate that this is indeed a much less opaque object than
others were AME has usually been detected. This fact, together with the broad
knowledge of the stellar content of this region, provides an excellent testbed
for AME characterization in physical conditions different from those generally
explored up to now.Comment: Accepted for publication in ApJ. 12 pages, 8 figure
Rapid Response to Mycophenolate Mofetil in Combination with Romiplostim in a Case of Severe Refractory Immune Thrombocytopenia Post COVID-19 Vaccination
Vaccine mediated immune mediated thrombocytopenia (ITP) is exceedingly rare. We present a case of a young female who developed severe refractory ITP with multiple bleeding sites post second dose of COVID-19 vaccination. She was treated with a combination of romiplostim and mycophenolate mofetil that resulted in rapid platelet count recovery
Hafnium carbide formation in oxygen deficient hafnium oxide thin films
On highly oxygen deficient thin films of hafnium oxide (hafnia, HfO)
contaminated with adsorbates of carbon oxides, the formation of hafnium carbide
(HfC) at the surface during vacuum annealing at temperatures as low as 600
{\deg}C is reported. Using X-ray photoelectron spectroscopy the evolution of
the HfC surface layer related to a transformation from insulating into
metallic state is monitored in situ. In contrast, for fully stoichiometric
HfO thin films prepared and measured under identical conditions, the
formation of HfC was not detectable suggesting that the enhanced adsorption
of carbon oxides on oxygen deficient films provides a carbon source for the
carbide formation. This shows that a high concentration of oxygen vacancies in
carbon contaminated hafnia lowers considerably the formation energy of hafnium
carbide. Thus, the presence of a sufficient amount of residual carbon in
resistive random access memory devices might lead to a similar carbide
formation within the conducting filaments due to Joule heating
- …