157 research outputs found

    The homeodomain transcription factor Orthopedia is involved in development of the Drosophila hindgut

    Get PDF
    Background The Drosophila hindgut is commonly used model for studying various aspects of organogenesis like primordium establishment, further specification, patterning, and morphogenesis. During embryonic development of Drosophila, many transcriptional activators are involved in the formation of the hindgut. The transcription factor Orthopedia (Otp), a member of the 57B homeobox gene cluster, is expressed in the hindgut and nervous system of developing Drosophila embryos, but due to the lack of mutants no functional analysis has been conducted yet. Results We show that two different otp transcripts, a hindgut-specific and a nervous system-specific form, are present in the Drosophila embryo. Using an Otp antibody, a detailed expression analysis during hindgut development was carried out. Otp was not only expressed in the embryonic hindgut, but also in the larval and adult hindgut. To analyse the function of otp, we generated the mutant otp allele otpGT by ends-out gene targeting. In addition, we isolated two EMS-induced otp alleles in a genetic screen for mutants of the 57B region. All three otp alleles showed embryonic lethality with a severe hindgut phenotype. Anal pads were reduced and the large intestine was completely missing. This phenotype is due to apoptosis in the hindgut primordium and the developing hindgut. Conclusion Our data suggest that Otp is another important factor for hindgut development of Drosophila. As a downstream factor of byn Otp is most likely present only in differentiated hindgut cells during all stages of development rather than in stem cells

    Orthopedia expression during Drosophila melanogaster nervous system development and its regulation by microRNA-252

    Get PDF
    During brain development of Drosophila melanogaster many transcription factors are involved in regulating neural fate and morphogenesis. In our study we show that the transcription factor Orthopedia (Otp), a member of the 57B homeobox gene cluster, plays an important role in this process. Otp is expressed in a stable pattern in defined lineages from mid-embryonic stages into the adult brain and therefore a very stable marker for these lineages. We determined the abundance of the two different otp transcripts in the brain and hindgut during development using qPCR. CRISPR/Cas9 generated otp mutants of the longer protein form significantly affect the expression of Otp in specific areas. We generated an otp enhancer trap strain by gene targeting and reintegration of Gal4, which mimics the complete expression of otp during development except the embryonic hindgut expression. Since in the embryo, the expression of Otp is posttranscriptionally regulated, we looked for putative miRNAs interacting with the otp 3â€ČUTR, and identified microRNA-252 as a candidate. Further analyses with mutated and deleted forms of the microRNA-252 interacting sequence in the otp 3â€ČUTR demonstrate an in vivo interaction of microRNA-252 with the otp 3â€ČUTR. An effect of this interaction is seen in the adult brain, where Otp expression is partially abolished in a knockout strain of microRNA-252. Our results show that Otp is another important factor for brain development in Drosophila melanogaster

    Enhancer analysis of the Drosophila zinc finger transcription factor Earmuff by gene targeting

    Get PDF
    Background Many transcription factors are involved in the formation of the brain during the development of Drosophila melanogaster. The transcription factor Earmuff (Erm), a member of the forebrain embryonic zinc finger family (Fezf), is one of these important factors for brain development. One major function of Earmuff is the regulation of proliferation within type II neuroblast lineages in the brain; here, Earmuff is expressed in intermediate neural progenitor cells (INPs) and balances neuronal differentiation versus stem cell maintenance. Erm expression during development is regulated by several enhancers. Results In this work we show a functional analysis of erm and some of its enhancers. We generated a new erm mutant allele by gene targeting and reintegrated Gal4 to make an erm enhancer trap strain that could also be used on an erm mutant background. The deletion of three of the previously analysed enhancers showing the most prominent expression patterns of erm by gene targeting resulted in specific temporal and spatial defects in defined brain structures. These defects were already known but here could be assigned to specific enhancer regions. Conclusion This analysis is to our knowledge the first systematic analysis of several large enhancer deletions of a Drosophila gene by gene targeting and will enable deeper analysis of erm enhancer functions in the future

    Functional analysis of enhancer elements regulating the expression of the Drosophila homeodomain transcription factor DRx by gene targeting

    Get PDF
    Background The Drosophila brain is an ideal model system to study stem cells, here called neuroblasts, and the generation of neural lineages. Many transcriptional activators are involved in formation of the brain during the development of Drosophila melanogaster. The transcription factor Drosophila Retinal homeobox (DRx), a member of the 57B homeobox gene cluster, is also one of these factors for brain development. Results In this study a detailed expression analysis of DRx in different developmental stages was conducted. We show that DRx is expressed in the embryonic brain in the protocerebrum, in the larval brain in the DM and DL lineages, the medulla and the lobula complex and in the central complex of the adult brain. We generated a DRx enhancer trap strain by gene targeting and reintegration of Gal4, which mimics the endogenous expression of DRx. With the help of eight existing enhancer-Gal4 strains and one made by our group, we mapped various enhancers necessary for the expression of DRx during all stages of brain development from the embryo to the adult. We made an analysis of some larger enhancer regions by gene targeting. Deletion of three of these enhancers showing the most prominent expression patterns in the brain resulted in specific temporal and spatial loss of DRx expression in defined brain structures. Conclusion Our data show that DRx is expressed in specific neuroblasts and defined neural lineages and suggest that DRx is another important factor for Drosophila brain development

    Regulatory modules mediating the complex neural expression patterns of the homeobrain gene during Drosophila brain development

    Get PDF
    Background: The homeobox gene homeobrain (hbn) is located in the 57B region together with two other homeobox genes, Drosophila Retinal homeobox (DRx) and orthopedia (otp). All three genes encode transcription factors with important functions in brain development. Hbn mutants are embryonic lethal and characterized by a reduction in the anterior protocerebrum, including the mushroom bodies, and a loss of the supraoesophageal brain commissure. Results: In this study we conducted a detailed expression analysis of Hbn in later developmental stages. In the larval brain, Hbn is expressed in all type II lineages and the optic lobes, including the medulla and lobula plug. The gene is expressed in the cortex of the medulla and the lobula rim in the adult brain. We generated a new hbnKOGal4 enhancer trap strain by reintegrating Gal4 in the hbn locus through gene targeting, which refects the complete hbn expression during development. Eight diferent enhancer-Gal4 strains covering 12 kb upstream of hbn, the two large introns and 5 kb downstream of the gene, were established and hbn expression was investigated. We characterized several enhancers that drive expression in specifc areas of the brain throughout development, from embryo to the adulthood. Finally, we generated deletions of four of these enhancer regions through gene targeting and analysed their efects on the expression and function of hbn. Conclusion: The complex expression of Hbn in the developing brain is regulated by several specifc enhancers within the hbn locus. Each enhancer fragment drives hbn expression in several specifc cell lineages, and with largely overlapping patterns, suggesting the presence of shadow enhancers and enhancer redundancy. Specifc enhancer deletion strains generated by gene targeting display developmental defects in the brain. This analysis opens an avenue for a deeper analysis of hbn regulatory elements in the future

    Generation of Mutants from the 57B Region of Drosophila melanogaster

    Get PDF
    The 57B region of Drosophila melanogaster includes a cluster of the three homeobox genes orthopedia (otp), Drosophila Retinal homeobox (DRx), and homeobrain (hbn). In an attempt to isolate mu tants for these genes, we performed an EMS mutagenesis and isolated lethal mutants from the 57B region, among them mutants for otp, DRx, and hbn. With the help of two newly generated deletions from the 57B region, we mapped additional mutants to specific chromosomal intervals and identi fied several of these mutants from the 57B region molecularly. In addition, we generated mutants for CG15651 and RIC-3 by gene targeting and mutants for the genes CG9344, CG15649, CG15650, and ND-B14.7 using the CRISPR/Cas9 system. We determined the lethality period during develop ment for most isolated mutants. In total, we analysed alleles from nine different genes from the 57B region of Drosophila, which could now be used to further explore the functions of the corresponding genes in the future

    GRFS and CRFS in alternative donor hematopoietic cell transplantation for pediatric patients with acute leukemia.

    Get PDF
    We report graft-versus-host disease (GVHD)-free relapse-free survival (GRFS) (a composite end point of survival without grade III-IV acute GVHD [aGVHD], systemic therapy-requiring chronic GVHD [cGVHD], or relapse) and cGVHD-free relapse-free survival (CRFS) among pediatric patients with acute leukemia (n = 1613) who underwent transplantation with 1 antigen-mismatched (7/8) bone marrow (BM; n = 172) or umbilical cord blood (UCB; n = 1441). Multivariate analysis was performed using Cox proportional hazards models. To account for multiple testing, P \u3c .01 for the donor/graft variable was considered statistically significant. Clinical characteristics were similar between UCB and 7/8 BM recipients, because most had acute lymphoblastic leukemia (62%), 64% received total body irradiation-based conditioning, and 60% received anti-thymocyte globulin or alemtuzumab. Methotrexate-based GVHD prophylaxis was more common with 7/8 BM (79%) than with UCB (15%), in which mycophenolate mofetil was commonly used. The univariate estimates of GRFS and CRFS were 22% (95% confidence interval [CI], 16-29) and 27% (95% CI, 20-34), respectively, with 7/8 BM and 33% (95% CI, 31-36) and 38% (95% CI, 35-40), respectively, with UCB (P \u3c .001). In multivariate analysis, 7/8 BM vs UCB had similar GRFS (hazard ratio [HR], 1.12; 95% CI, 0.87-1.45; P = .39), CRFS (HR, 1.06; 95% CI, 0.82-1.38; P = .66), overall survival (HR, 1.07; 95% CI, 0.80-1.44; P = .66), and relapse (HR, 1.44; 95% CI, 1.03-2.02; P = .03). However, the 7/8 BM group had a significantly higher risk for grade III-IV aGVHD (HR, 1.70; 95% CI, 1.16-2.48; P = .006) compared with the UCB group. UCB and 7/8 BM groups had similar outcomes, as measured by GRFS and CRFS. However, given the higher risk for grade III-IV aGVHD, UCB might be preferred for patients lacking matched donors. © 2019 American Society of Hematology. All rights reserved

    Pregnancy length and health in giant pandas: what can metabolic and urinary endocrine markers unveil?

    Get PDF
    Mature female giant pandas usually ovulate once a year. This is followed by an obligatory luteal phase, consisting of a long-lasting corpus luteum dormancy phase (CLD; primary increase in progestogens) and a much shorter active luteal phase (AL; secondary increase in progestogens). Varying duration of both the dormant (embryonic diapause) and AL (post-embryo reactivation) phases has hampered unambiguous pregnancy length determination in giant pandas until today. Additionally, progestogen profiles have been considered not to differ between pregnant and pseudopregnant cycles. Only ceruloplasmin, 13,14-dihydro-15-keto-PGF2α (PGFM) and – more recently – estrogens have been assigned diagnostic power so far. Our study investigated the competence of metabolic (fecal output) and Urinary Specific Gravity (USpG)-normalized urinary endocrine (progestogens, PGFM, glucocorticoids (GCM) and ceruloplasmin) markers for pregnancy monitoring including defining the duration of the AL phase length. Research on 24 (6 pregnant, 8 pseudopregnant and 10 non-birth) cycles of 6 giant pandas revealed a fixed AL phase length of 42 days in giant pandas, e.g. representing 6 weeks of post- diapause development in case of pregnancy. Progestogen concentrations were significantly higher in pregnant cycles throughout the majority of the AL phase, with significant higher values during the AL phase in healthy twin compared to singleton pregnancies. GCM concentrations were also markedly higher in giant pandas expecting offspring, with a clear increase towards birth in the final 2 weeks of pregnancy. This increase in GCM was running in parallel with elevating estrogen and PGFM concentrations, and decreasing progestogens. In addition, during the AL phase, a more pronounced decrease in fecal output was obvious for pregnant females. The combined profiles of non-invasive metabolic and endocrine markers, the latter normalized based on USpG, showed a true pregnancy signature during the AL phase. The findings of this study are applicable to retrospective evaluations of non-birth cycles facilitating categorizing those into pseudopregnant or lost pregnancies, with USpG-normalization of the urinary endocrine markers as a prerequisite
    • 

    corecore