13 research outputs found

    Evaluation of the compositional changes during flooding of reactive fluids using scanning electron microscopy, nano-secondary ion mass spectrometry, x-ray diffraction, and whole-rock geochemistry

    Get PDF
    Outcrop chalk of late Campanian age (Gulpen Formation) from Liège (Belgium) was flooded with MgCl2 in a triaxial cell for 516 days under reservoir conditions to understand how the non-equilibrium nature of the fluids altered the chalks. The study is motivated by enhanced oil recovery (EOR) processes because dissolution and precipitation change the way in which oils are trapped in chalk reservoirs. Relative to initial composition, the first centimeter of the flooded chalk sample shows an increase in MgO by approximately 100, from a weight percent of 0.33% to 33.03% and a corresponding depletion of CaO by more than 70% from 52.22 to 14.43 wt.%. Except for Sr, other major or trace elements do not show a significant change in concentration. Magnesite was identified as the major newly grown mineral phase. At the same time, porosity was reduced by approximately 20%. The amount of Cl− in the effluent brine remained unchanged, whereas Mg2+ was depleted and Ca2+ enriched. The loss of Ca2+ and gain in Mg2+ are attributed to precipitation of new minerals and leaching the tested core by approximately 20%, respectively. Dramatic mineralogical and geochemical changes are observed with scanning electron microscopy–energy-dispersive x-ray spectroscopy, nano secondary ion mass spectrometry, x-ray diffraction, and whole-rock geochemistry techniques. The understanding of how fluids interact with rocks is important to, for example, EOR, because textural changes in the pore space affect how water will imbibe and expel oil from the rock. The mechanisms of dissolution and mineralization of fine-grained chalk can be described and quantified and, when understood, offer numerous possibilities in the engineering of carbonate reservoirs.acceptedVersio

    Calcareous dinoflagellates in Maastrichtian-Tertiary sediments of ODP Hole 113-689B

    No full text
    The distribution of calcareous dinoflagellates has been analysed for the Maastrichtian-Miocene interval of Ocean Drilling Project Hole 689B (Maud Rise, Weddell Sea). The investigation thus represents a primary evaluation of the long-term evolution in high-latitude calcareous dinoflagellate assemblages during the transition from a relatively warm Late Cretaceous to a cold Neogene climate. Major assemblage changes during this interval occurred in characteristic steps: (1) an increase in relative abundance of tangentially structured species - particularly Operculodinella operculata - at the Cretaceous/Tertiary boundary; (2) a diversity decrease and several first and last appearances across the Middle-Late Eocene boundary, possibly attributed to increased climate cooling; (3) a diversity decrease associated with the dominance of Calciodinellum levantinum in the late Early Oligocene; (4) the reappearance and dominance of Pirumella edgarii in the Early Miocene, probably reflecting a warming trend; (5) monogeneric assemblages dominated by Caracomia spp. denoting strong Middle Miocene cooling. The results not only extend the biogeographic ranges of many taxa into the Antarctic region, but also indicate that the evolution of high-latitude calcareous dinoflagellate assemblages parallels the changing environmental conditions in the course of the Cenozoic climate transition. Therefore, calcareous dinoflagellates contribute to our understanding of the biotic effects associated with palaeoenvironmental changes and might possess the potential for reconstructing past conditions. The flora in the core includes one new taxon: Caracomia arctica forma spinosa Hildebrand-Habel and Streng, forma nov. Additionally, two new combinations are proposed: Fuettererella deflandrei (Kamptner, 1956) Hildebrand-Habel and Streng, comb. nov. and Fuettererella flora (Fuetterer, 1990) Hildebrand-Habel and Streng, comb. nov

    Calcareous dinoflagellates in Maastrichtian to early Miocene sediments of DSDP Hole 39-357

    No full text
    The evolution of calcareous dinoflagellate communities has been investigated for the latest Cretaceous to earliest Neogene interval of the mid-latitude South Atlantic. In doing so, the response of calcareous dinoflagellates to Cenozoic climatic change has been addressed for the first time. Trends in species composition and distribution patterns of wall types indicate significant changes which correlate with major palaeoenvironmental modifications. A first major shift concerning the relative abundance of species and wall types occurred across the Cretaceous-Tertiary boundary. The associations remained stable during the entire Paleocene and Eocene. Only in the late Eocene did a dramatic decrease in temperature cause a slight diversification. A second major shift in the abundance patterns occurred across the Eocene-Oligocene boundary. The early Miocene warming is possibly reflected in the distinct increase in relative abundance of one species. The assemblages of calcareous dinoflagellates evidently react to major climatic changes during the Cenozoic. These poorly investigated organisms may thus provide an important contribution to the understanding of earth's palaeoclimatic evolution

    Calcareous dinoflagellates in Cretaceous to Recent sediments of DSDP Hole 39-356

    No full text
    Calcareous dinoflagellates often dominate the dinoflagellate cyst assemblage in Cretaceous to Recent oceanic sediments. However, their distribution in Paleogene sediments has scarcely been studied. The investigation of samples from DSDP Site 356 for their calcareous dinoflagellate content revealed 35 mainly long-ranging taxa. The associations and characteristic wall types (pithonelloid, oblique, radial, tangential) fluctuate quantitatively and qualitatively in distinct stratigraphic patterns. Significant shifts, primarily at the K/T boundary and the Paleocene/Eocene boundary, reflect changes in environmental conditions. Certain dinoflagellates forming calcareous cysts, such as Operculodinella operculata, were well adapted to the relatively rapid change of environmental conditions at the K/T boundary, thus blooming to dominate the carbonate flux to the ocean floor. In contrast to the stable Paleocene associations, Eocene calcareous dinoflagellates show fluctuations in relative abundances. These fluctuations can possibly be attributed to redeposition related to increased seaward transport of specimens, due to strengthened western boundary currents. The flora includes two new genera, one new species, and two new forms: Retesphaera diadema Hildebrand-Habel, Willems et Versteegh, gen. et. sp. nov., Cervisiella saxea (Stradner, 1961) Hildebrand-Habel, Willems et Versteegh, gen. et comb. nov., Sphaerodinella? tuberosa forma elongata Hildebrand-Habel, Willems et Versteegh, comb. et forma nov., Sphaerodinella? tuberosa forma variospinosa Hildebrand-Habel, Willems et Versteegh, comb. et forma nov. Three new combinations are proposed: Cervisiella saxea (Stradner, 1961) Hildebrand-Habel, Willems et Versteegh, gen. et comb. nov., Operculodinella operculata (Bramlette et Martini, 1964) Hildebrand-Habel, Willems et Versteegh, comb. nov., and Sphaerodinella? tuberosa (Kamptner, 1963) Hildebrand-Habel, Willems et Versteegh, comb. nov. The genus Operculodinella Kienel, 1994 is emended
    corecore