7,016 research outputs found
Geology, Mantle Tomography, and Inclination Corrected Paleogeographic Trajectories Support Westward Subduction During Cretaceous Orogenesis in the North American Cordillera
Geological evidence, including the presence of two passive margin platforms, juxtaposed and mismatched deformation between North America and more outboard terranes, as well as the lack of rift deposits, suggest that North America was the lower plate during both the Sevier and Laramide events and that subduction dipped westward beneath the Cordilleran Ribbon Continent (Rubia). Terranes within the composite ribbon continent, now present in the Canadian Cordillera, collided with western North America during the 125–105 Ma Sevier event and were transported northward during the ~80–58 Ma Laramide event, which affected the Cordillera from South America to Alaska. New high-resolution mantle tomography beneath North America reveals a huge slab wall that extends vertically for over 1000 km, marks the site of long-lived subduction, and provides independent verification of the westward-dipping subduction model. Other workers analyzed paleogeographic trajectories and concluded that the initial collision took place in Canada at about 160 Ma – a time and place for which there is no deformational thickening on the North American platform – and later farther west where subduction was not likely westward, but eastward. However, by utilizing a meridionally corrected North American paleogeographic trajectory, coupled with the geologically most reasonable location for the initial deformation, the position of western North America with respect to the relict superslab parsimoniously accounts for the timing and extents of both the Sevier and Laramide events. SOMMAIRELes indications géologiques, en particulier la présence de deux marges de plateforme passives, de déformations adjacentes non-conformes entre l’Amérique du Nord et les terranes extérieurs, ainsi que l’absence de gisements de rift, permet de croire que l’Amérique du Nord était la plaque sous-jacente durant les événements de Sevier et de Laramide et que la subduction plongeait vers l’ouest sous le continent rubané de la Cordillères (Rubia). Les terranes du continent rubané composite, maintenant au sein de la Cordillère canadienne, sont entrés en collision avec l’ouest de l’Amérique du Nord durant l’événement Sevier (125-105 Ma), et ont été transportés vers le nord durant l’événement Laramide (~80–58 Ma), laquelle a affecté la Cordillère, de l’Amérique du Sud à l’Alaska. Une nouvelle tomographie haute résolution du manteau sous l’Amérique du Nord montre la présence d’un gigantesque mur de plaques vertical qui s’étend sur 1 000 km, marque le site d’une subduction de longue haleine, et offre une validation indépendante du modèle d’une subduction à pendage vers l’ouest. D’autres chercheurs ont analysé les trajectoires paléogéographiques et conclu que la collision initiale s’est produite au Canada vers 160 Ma – un moment et un endroit sans épaississement par déformation sur la plateforme d’Amérique du Nord – et plus tard plus à l’ouest, là où la subduction n’était vraisemblablement pas vers l’ouest, mais vers l’est. Cela dit, en considérant une trajectoire paléogéographique de l’Amérique du Nord corrigée longitudinalement, avec la position géologique la plus probable de la déformation initiale, la position de la portion ouest de l’Amérique du Nord par rapport aux restes de la super-plaque explique alors facilement la chronologie et l’étendue des épisodes Sevier et Laramide
An Origin of the Huge Far-Infrared Luminosity of Starburst Mergers
Recently Taniguchi and Ohyama found that the higher CO to CO
integrated intensity ratios at a transition =1--0, CO)CO) , in a sample of starburst merging
galaxies such as Arp 220 are mainly attributed to the depression of CO
emission with respect to CO. Investigating the same sample of galaxies
analyzed by Taniguchi & Ohyama, we find that there is a tight, almost linear
correlation between the dust mass and CO luminosity. This implies that
dust grains are also depressed in the high- starburst mergers, leading to
the higher dust temperature () in them because of the relative
increase in the radiation density. Nevertheless, the average dust mass () of the high- starburst mergers is higher significantly than that of
non-high galaxies. This is naturally understood because the galaxy mergers
could accumulate a lot of dust grains from their progenitor galaxies together
with supply of dust grains formed newly in the star forming regions. Since
(FIR) given the dust emissivity law, , the increases in both and
explain well why the starburst mergers are so bright in the FIR. We discuss
that the superwind activity plays an important role in destroying dust grains
as well as dense gas clouds in the central region of mergers.Comment: 10 pages (aaspp4.sty), 3 postscript figures (embedded). Accepted for
publication in Astrophysical Journal Letter
Observation of infinite-range intensity correlations above, at and below the 3D Anderson localization transition
We investigate long-range intensity correlations on both sides of the
Anderson transition of classical waves in a three-dimensional (3D) disordered
material. Our ultrasonic experiments are designed to unambiguously detect a
recently predicted infinite-range C0 contribution, due to local density of
states fluctuations near the source. We find that these C0 correlations, in
addition to C2 and C3 contributions, are significantly enhanced near mobility
edges. Separate measurements of the inverse participation ratio reveal a link
between C0 and the anomalous dimension \Delta_2, implying that C0 may also be
used to explore the critical regime of the Anderson transition.Comment: 13 pages, 11 figures (main text plus supplemental information).
Updated version includes an improved introductory paragraph, minor text
revisions, a revised title and additional supplemental information on the
experimental detail
Far infrared maps of the ridge between OMC-1 and OMC-2
Dust continuum emission from a 6 ft x 20 ft region surrounding OMC-1 and OMC-2 were mapped at 55 and 125 microns with 4 ft resolution. The dominant features of the maps are a strong peak at OMC-1 and a ridge of lower surface brightness between OMC-1 and OMC-2. Along the ridge the infrared flux densities and the color temperature decreases smoothly from OMC-1 to OMC-2. OMC-1 is heated primarily by several optical and infrared stars situated within or just at the boundary of the cloud. At the region of minimum column density between OMC-1 and OMC-2 the nearby B0.5 V star NU Ori may contribute significantly to the dust heating. Near OMC-2 dust column densities are large enough so that, in addition to the OMC-2 infrared cluster, the nonlocal infrared sources associated with OMC-1 and NU Ori can contribute to the heating
Arc and Slab-Failure Magmatism in Cordilleran Batholiths I – The Cretaceous Coastal Batholith of Peru and its Role in South American Orogenesis and Hemispheric Subduction Flip
We examined the temporal and spatial relations of rock units within the Western Cordillera of Peru where two Cretaceous basins, the Huarmey-Cañete and the West Peruvian Trough, were considered by previous workers to represent western and eastern parts respectively of the same marginal basin. The Huarmey-Cañete Trough, which sits on Mesoproterozoic basement of the Arequipa block, was filled with up to 9 km of Tithonian to Albian tholeiitic–calc-alkaline volcanic and volcaniclastic rocks. It shoaled to subaerial eastward. At 105–101 Ma the rocks were tightly folded and intruded during and just after the deformation by a suite of 103 ± 2 Ma mafic intrusions, and later in the interval 94–82 Ma by probable subduction-related plutons of the Coastal batholith. The West Peruvian Trough, which sits on Paleozoic metamorphic basement, comprised a west-facing siliciclastic-carbonate platform and adjacent basin filled with up to 5 km of sandstone, shale, marl and thinly bedded limestone deposited continuously throughout the Cretaceous. Rocks of the West Peruvian Trough were detached from their basement, folded and thrust eastward during the Late Cretaceous–Early Tertiary. Because the facies and facing directions of the two basins are incompatible, and their development and subjacent basements also distinct, the two basins could not have developed adjacent to one another. Based on thickness, composition and magmatic style, we interpret the magmatism of the Huarmey-Cañete Trough to represent a magmatic arc that shut down at about 105 Ma when the arc collided with an unknown terrane. We relate subsequent magmatism of the early 103 ± 2 Ma syntectonic mafic intrusions and dyke swarms to slab failure. The Huarmey-Cañete-Coastal batholithic block and its Mesoproterozoic basement remained offshore until 77 ± 5 Ma when it collided with, and was emplaced upon, the partially subducted western margin of South America to form the east-vergent Marañon fold–thrust belt. A major pulse of 73–62 Ma plutonism and dyke emplacement followed terminal collision and is interpreted to have been related to slab failure of the west-dipping South American lithosphere. Magmatism, 53 Ma and younger, followed terminal collision and was generated by eastward subduction of Pacific oceanic lithosphere beneath South America. Similar spatial and temporal relations exist over the length of both Americas and represent the terminal collision of an arc-bearing ribbon continent with the Americas during the Late Cretaceous–Early Tertiary Laramide event. It thus separated long-standing westward subduction from the younger period of eastward subduction characteristic of today. We speculate that the Cordilleran Ribbon Continent formed during the Mesozoic over a major zone of downwelling between Tuzo and Jason along the boundary of Panthalassic and Pacific oceanic plates.SOMMAIRENous avons étudié les relations spatiales et temporales des unités de roches dans la portion ouest de la Cordillère du Pérou, où deux bassins crétacés, la fosse d’accumulation de Huarmey-Cañete et la fosse d’accumulation péruvienne de l’ouest, ont été perçues par des auteurs précédents comme les portions ouest et est d’un même bassin de marge. La fosse de Huarmey-Cañete, qui repose sur le socle mésoprotérozoïque du bloc d’Arequipa, a été comblée par des couches de roches volcaniques tholéitiques – calco-alcalines de l’Albien au Thithonien atteignant 9 km d’épaisseur. Vers l’est, l’ensemble a fini par former des hauts fonds. Vers 105 à 101 Ma, les roches ont été plissées fortement puis recoupées par une suite d’intrusions vers 103 ± 2 Ma, durant et juste après la déformation, et plus tard dans l’intervalle 94 – 82 Ma, probablement par des plutons de subduction du batholite côtier. Quant à la fosse d’accumulation péruvienne de l’ouest, elle repose sur un socle métamorphique paléozoïque, et elle est constituée d’une plateforme silicoclastique – carbonate à pente ouest et d’un bassin contigu comblé par des grès, des schistes, des marnes et des calcaires finement laminés atteignant 5 km d’épaisseur et qui se sont déposés en continu durant tout le Crétacé. Les roches de la fosse d’accumulation péruvienne de l’ouest ont été décollées de leur socle, plissées et charriées vers l’est durant la fin du Crétacé et le début du Tertiaire. Parce que les facies et les profondeurs de sédimentation de ces deux fosses d’accumulation dont incompatibles, et que leur développement et leur socle sont différents, ces deux fosses ne peuvent pas s’être développées côte à côte. À cause de l’épaisseur accumulée, de sa composition et du style de son magmatisme, nous pensons que la fosse d’accumulation de Huarmey-Cañete représente un arc magmatique qui s’est éteinte vers 105 Ma, lorsque l’arc est entré en collision avec un terrane inconnu. Nous pensons que le magmatisme subséquent aux premières intrusions mafiques syntectoniques et aux réseaux de dykes de 103 ± 2 Ma sont à mettre au compte d’une rupture de plaque. Le bloc Huarmey-Cañete-batholitique côtier et son socle mésoprotérozoïque sont demeurés au large jusqu’à 77 ± 5 Ma, moment où il est entré en collision et a été poussé par-dessus la marge ouest sud-américaine partiellement subduite, pour ainsi former la zone de chevauchement de vergence est de Marañon. Nous croyons que la séquence majeure de plutonisme et d’intrusion de dykes qui a succédé à la collision finale à 73–62 Ma doit être reliée à une rupture de la plaque lithosphérique sud-américaine à pendage ouest. Le magmatisme de 53 Ma et plus récent qui a succédé à la collision finale, a été généré par la subduction vers l’est de la lithosphère océanique du Pacifique sous l’Amérique du Sud. Des relations temporelles et spatiales similaires qui existent tout le long des deux Amériques représentent la collision terminale d’un ruban continental d’arcs avec les Amériques durant la phase tectonique laramienne de la fin du Crétacé–début du Tertiaire. Elle a donc séparé la subduction vers l’ouest de longue date de la période de subduction vers l’est plus jeune caractérisant la situation actuelle. Nous considérons que le ruban continental de la Cordillère s’est constitué durant le Mésozoïque au-dessus d’une zone majeure de convection descendante entre Tuzo et Jason, le long de la limite entre les plaques océaniques Panthalassique et Pacifique
Arc and Slab-Failure Magmatism in Cordilleran Batholiths II – The Cretaceous Peninsular Ranges Batholith of Southern and Baja California
Ever since the late 1960s when Warren Hamilton proposed that the great Cordilleran batholiths of the western Americas are the roots of volcanic arcs like the Andes and were generated by longstanding eastward subduction, most geologists have followed suit, despite the evergrowing recognition that many Cordilleran batholiths are complex, composite bodies that developed with intervals of intense shortening and exhumation between and during periods of magmatism. The Peninsular Ranges batholith of Southern and Baja California provides a superb place to unravel the complexities because there is a lot of data and because it is longitudinally composed of two parts: an older western portion of weakly to moderately deformed, low-grade volcanic and epizonal plutonic rocks ranging in age from ~128–100 Ma; and a more easterly sector of deformed amphibolite grade rocks cut by compositionally zoned, mesozonal plutonic complexes of the La Posta suite, emplaced from 99–86 Ma. While plutons of the La Posta suite are generally considered to be the product of continued eastward subduction, they are enigmatic, because they and their wall rocks were rapidly exhumed from as deep as 23 km and eroded during, and just after, their emplacement, unlike plutons in magmatic arcs, which are generally emplaced in zones of subsidence. Here we resolve the enigma with a model where westward-dipping subduction led to arc magmatism of the western sector, the Santiago Peak–Alisitos composite arc, during the period ~128–100 Ma. Arc magmatism shut down when the arc collided with a west-facing Early Cretaceous passive margin at about 100 Ma. During the collision the buoyancy contrast between the continental crust of the eastern block and its attached oceanic lithosphere led to failure of the subducting slab. The break-off allowed subjacent asthenosphere to upwell, adiabatically melt, and rise into the upper plate to create the large zoned tonalite–granodiorite–granite complexes of the La Posta suite. While compositionally similar to arc plutons in many respects, the examples from the Southern California and Baja segments of the batholith have geochemistry that indicates they were derived from partial melting of asthenosphere at deeper levels in the mantle than typical arc magmas, and within the garnet stability field. This is consistent with asthenosphere upwelling through the torn lower-plate slab. We identify kindred rocks with similar geological relations in other Cordilleran batholiths of the Americas, such as the Sierra Nevada, which lead us to suggest that slab failure magmatism is common, both spatially and temporally.SOMMAIREDepuis la fin des années 1960, Warren Hamilton a proposé que les grands batholites de la Cordillère de l'ouest des Amériques sont les racines d’arcs volcaniques andéens issus de la subduction vers l'est de longue durée, et depuis la plupart des géologues ont emboîté le pas, bien qu’un nombre croissant d’indications montrent que de nombreux batholites de la Cordillère sont des entités composites complexes qui se sont développés lors d’intervalles intenses de contraction et d’exhumation, durant et entre les périodes de magmatisme. Le batholite Peninsular Ranges du Sud de la Californie et de Baja California est un excellent endroit permettant de démêler les choses parce qu'il y a beaucoup de données et parce qu'il est composé longitudinalement de deux parties: une partie occidentale plus ancienne, faiblement à modérément déformée, de roches volcaniques de faible métamorphisme et de roches plutoniques épizonales âgées d’environ 128 Ma à 100 Ma; et, d’un segment plus à l'est de roches amphiboliques déformées recoupées par des roches de composition zonée des complexes mésozonaux plutoniques de la suite de la Posta, mises en place entre 99 Ma et 86 Ma. Bien que les plutons de la suite La Posta sont généralement considérés comme le produit d’une subduction soutenue vers l’est, ils posent problème, parce qu'avec leurs roches encaissantes, ils ont été rapidement exhumés de profondeurs aussi grandes que 23 km, et érodées durant et juste après leur mise en place, contrairement aux plutons des arcs magmatiques, qui sont généralement mis en place dans les zones de subsidence. Dans le présent article, nous proposons une solution à ce problème, avec un modèle de subduction vers l'ouest qui conduit à un magmatisme d'arc du secteur ouest, l'arc composite de Santiago Peak-Alisitos, durant la période d’environ 128 Ma à 100 Ma. Le magmatisme d’arc s’est arrêté lorsque l'arc est entré en collision avec une marge passive à pendage ouest du début du Crétacé, il y a environ 100 Ma. Lors de la collision, le contraste de flottabilité entre la croûte continentale du bloc de est et la lithosphère océanique qui y est rattachée a conduit à l'avortement de la plaque plongeante. La cassure a entrainé la remontée de l’asthénosphère sous-jacente, sa fusion adiabatique, et sa remontée dans la plaque supérieure pour former les grands complexes zonés de tonalite-granodiorite-granite de La Posta. Bien que de composition similaire aux plutons d'arc à bien des égards, les exemples des segments de batholites de Californie du Sud et de Baja ont une géochimie qui indique qu'ils proviennent de la fusion partielle de l’asthénosphère à des niveaux plus profonds dans le manteau que les magmas d'arc typiques, à l’intérieur du domaine de stabilité du grenat. Ce qui correspond à une remontée d’asthénosphère à travers une dalle de plaque inférieure cassée. Nous connaissons des roches semblables avec les relations géologiques similaires dans d'autres batholites de la Cordillère des Amériques, tel celles de la Sierra Nevada, ce qui nous amène à penser que le magmatisme de cassure de plaque est commun, tant spatialement et temporellement
Far infrared and submillimeter brightness temperatures of the giant planets
The brightness temperatures of Jupiter, Saturn, Uranus, and Neptune in the range 35 to 1000 micron. The effective temperatures derived from the measurements, supplemented by shorter wavelength Voyager data for Jupiter and Saturn, are 126.8 + or - 4.5 K, 93.4 + or - 3.3 K, 58.3 + or - 2.0 K, and 60.3 + or - 2.0 K, respectively. The implications of the measurements for bolometric output and for atmospheric structure and composition are discussed. The temperature spectrum of Jupiter shows a strong peak at approx. 350 microns followed by a deep valley at approx. 450 to 500 microns. Spectra derived from model atmospheres qualitatively reproduced these features but do not fit the data closely
The Molecular Interstellar Medium in Ultraluminous Infrared Galaxies
We present CO observations of a large sample of ultraluminous IR galaxies out
to z = 0.3. Most of the galaxies are interacting, but not completed mergers.
All but one have high CO(1-0) luminosities, log(Lco [K-km/s-pc^2]) = 9.92 +/-
0.12. The dispersion in Lco is only 30%, less than that in the FIR luminosity.
The integrated CO intensity correlates Strongly with the 100 micron flux
density, as expected for a black body model in which the mid and far IR
radiation are optically thick. We use this model to derive sizes of the FIR and
CO emitting regions and the enclosed dynamical masses. Both the IR and CO
emission originate in regions a few hundred parsecs in radius. The median value
of Lfir/Lco = 160 Lsun/(K-km/s-pc^2), within a factor of two of the black body
limit for the observed FIR temperatures. The entire ISM is a scaled up version
of a normal galactic disk with densities a factor of 100 higher, making even
the intercloud medium a molecular region. Using three different techniques of
H2 mass estimation, we conclude that the ratio of gas mass to Lco is about a
factor of four lower than for Galactic molecular clouds, but that the gas mass
is a large fraction of the dynamical mass. Our analysis of CO emission reduces
the H2 mass from previous estimates of 2-5e10 Msun to 0.4-1.5e10 Msun, which is
in the range found for molecular gas rich spiral galaxies. A collision
involving a molecular gas rich spiral could lead to an ultraluminous galaxy
powered by central starbursts triggered by the compression of infalling
preexisting GMC's.Comment: 34 pages LaTeX with aasms.sty, 14 Postscript figures, submitted to
ApJ Higher quality versions of Figs 2a-f and 7a-c available by anonymous FTP
from ftp://sbast1.ess.sunysb.edu/solomon/
Polarization of Thermal Emission from Aligned Dust Grains Under an Anisotropic Radiation Field
If aspherical dust grains are immersed in an anisotropic radiation field,
their temperature depends on the cross-sections projected in the direction of
the anisotropy.It was shown that the temperature difference produces polarized
thermal emission even without alignment, if the observer looks at the grains
from a direction different from the anisotropic radiation. When the dust grains
are aligned, the anisotropy in the radiation makes various effects on the
polarization of the thermal emission, depending on the relative angle between
the anisotropy and alignment directions. If the both directions are parallel,
the anisotropy produces a steep increase in the polarization degree at short
wavelengths. If they are perpendicular, the polarization reversal occurs at a
wavelength shorter than the emission peak. The effect of the anisotropic
radiation will make a change of more than a few % in the polarization degree
for short wavelengths and the effect must be taken into account in the
interpretation of the polarization in the thermal emission. The anisotropy in
the radiation field produces a strong spectral dependence of the polarization
degree and position angle, which is not seen under isotropic radiation. The
dependence changes with the grain shape to a detectable level and thus it will
provide a new tool to investigate the shape of dust grains. This paper presents
examples of numerical calculations of the effects and demonstrates the
importance of anisotropic radiation field on the polarized thermal emission.Comment: 13pages, 7figure
- …