9 research outputs found

    Redundant and non-redundant roles of the trehalose-6-phosphate phosphatases in leave growth, root hair specification and energy-responses in Arabidopsis

    Get PDF
    The Arabidopsis trehalose-6-phosphate phosphatase (TPP) gene family arose mainly from whole genome duplication events and consists of 10 genes (TPPA-J). All the members encode active TPP enzymes, possibly regulating the levels of trehalose-6-phosphate, an established signaling metabolite in plants. GUS activity studies revealed tissue-, cell- and stage-specific expression patterns for the different members of the TPP gene family. Here we list additional examples of the remarkable features of the TPP gene family. TPPA-J expression levels seem, in most of the cases, differently regulated in response to light, darkness and externally supplied sucrose. Disruption of the TPPB gene leads to Arabidopsis plants with larger leaves, which is the result of an increased cell number in the leaves. Arabidopsis TPPA and TPPG are preferentially expressed in atrichoblast cells. TPPA and TPPG might fulfill redundant roles during the differentiation process of root epidermal cells, since the tppa tppg double mutant displays a hairy root phenotype, while the respective single knockouts have a distribution of trichoblast and atrichoblast cells similar to the wild type. These new data portray redundant and non-redundant functions of the TPP proteins in regulatory pathways in Arabidopsis

    Overexpression of the trehalase gene AtTRE1 leads to increased drought stress tolerance in Arabidopsis and is involved in abscisic acid-induced stomatal closure

    No full text
    Introduction of microbial trehalose biosynthesis enzymes has been reported to enhance abiotic stress resistance in plants but also resulted in undesirable traits. Here, we present an approach for engineering drought stress tolerance by modifying the endogenous trehalase activity in Arabidopsis (Arabidopsis thaliana). AtTRE1 encodes the Arabidopsis trehalase, the only enzyme known in this species to specifically hydrolyze trehalose into glucose. AtTRE1-overexpressing and Attre1 mutant lines were constructed and tested for their performance in drought stress assays. AtTRE1-overexpressing plants had decreased trehalose levels and recovered better after drought stress, whereas Attre1 mutants had elevated trehalose contents and exhibited a drought-susceptible phenotype. Leaf detachment assays showed that Attre1 mutants lose water faster than wild-type plants, whereas AtTRE1-overexpressing plants have a better water-retaining capacity. In vitro studies revealed that abscisic acid-mediated closure of stomata is impaired in Attre1 lines, whereas the AtTRE1 overexpressors are more sensitive toward abscisic acid-dependent stomatal closure. This observation is further supported by the altered leaf temperatures seen in trehalase-modified plantlets during in vivo drought stress studies. Our results show that overexpression of plant trehalase improves drought stress tolerance in Arabidopsis and that trehalase plays a role in the regulation of stomatal closure in the plant drought stress response
    corecore