33 research outputs found

    Effect of pre-weaning diet on the ruminal archaeal, bacterial, and fungal communities of dairy calves.

    Get PDF
    At birth, calves display an underdeveloped rumen that eventually matures into a fully functional rumen as a result of solid food intake and microbial activity. However, little is known regarding the gradual impact of pre-weaning diet on the establishment of the rumen microbiota. Here, we employed next-generation sequencing to investigate the effects of the inclusion of starter concentrate (M: milk-fed vs. MC: milk plus starter concentrate fed) on archaeal, bacterial and anaerobic fungal communities in the rumens of 45 crossbred dairy calves across pre-weaning development (7, 28, 49, and 63 days). Our results show that archaeal, bacterial, and fungal taxa commonly found in the mature rumen were already established in the rumens of calves at 7 days old, regardless of diet. This confirms that microbiota colonization occurs in the absence of solid substrate. However, diet did significantly impact some microbial taxa. In the bacterial community, feeding starter concentrate promoted greater diversity of bacterial taxa known to degrade readily fermentable carbohydrates in the rumen (e.g., Megasphaera, Sharpea, and Succinivribrio). Shifts in the ruminal bacterial community also correlated to changes in fermentation patterns that favored the colonization of Methanosphaera sp. A4 in the rumen of MC calves. In contrast, M calves displayed a bacterial community dominated by taxa able to utilize milk nutrients (e.g., Lactobacillus, Bacteroides, and Parabacteroides). In both diet groups, the dominance of these milk-associated taxa decreased with age, suggesting that diet and age simultaneously drive changes in the structure and abundance of bacterial communities in the developing rumen. Changes in the composition and abundance of archaeal communities were attributed exclusively to diet, with more highly abundant Methanosphaera and less abundant Methanobrevibacter in MC calves. Finally, the fungal community was dominated by members of the genus SK3 and Caecomyces. Relative anaerobic fungal abundances did not change significantly in response to diet or age, likely due to high inter-animal variation and the low fiber content of starter concentrate. This study provides new insights into the colonization of archaea, bacteria, and anaerobic fungi communities in pre-ruminant calves that may be useful in designing strategies to promote colonization of target communities to improve functional development

    Bovicin HC5, a Lantibiotic Produced by Streptococcus bovis HC5, Catalyzes the Efflux of Intracellular Potassium but Not ATP ▿

    No full text
    Bovicin HC5, a broad-spectrum lantibiotic produced by Streptococcus bovis HC5, catalyzed the efflux of intracellular potassium from Streptococcus bovis JB1, a sensitive strain. The level of ATP also decreased, but this decline appeared to be caused by the activity of the F1F0 ATPase rather than efflux per se

    Ability of Lysozyme and 2-Deoxyglucose To Differentiate Human and Bovine Streptococcus bovis Strains

    No full text
    Human and bovine Streptococcus bovis strains had the same 16S ribosomal DNA restriction fragment length polymorphism and often had the same patterns of starch, mannitol, lactose, and raffinose utilization. PCRs of BOX sequences differed, but numerical analyses indicated that some human strains clustered with bovine strains. However, human and bovine strains had distinctly different sensitivities to lysozyme and 2-deoxyglucose

    Draft genome sequence of Streptococcus equinus (Streptococcus bovis) HC5, a lantibiotic producer from the bovine rumen

    Get PDF
    Streptococcus equinus (Streptococcus bovis) HC5 is a bacteriocinogenic lactic acid bacterium with simple growth requirements. The draft genome sequence of S. equinus HC5 consists of 1,846,241 bp, with a G+C content of 37.04%. In silico analysis indicated that S. equinus HC5 might be useful to control bacteria that are detrimental to livestock animals

    Bovicin HC5 inhibits wasteful amino acid degradation by mixed ruminal bacteria in vitro

    Get PDF
    Streptococcus bovis HC5 produces a broad spectrum lantibiotic (bovicin HC5) that inhibits pure cultures of hyper ammonia-producing bacteria (HAB). Experiments were preformed to see if: (1) S. bovis HC5 cells could inhibit the deamination of amino acids by mixed ruminal bacteria taken directly from a cow, (2) semi-purified bovicin was as effective as S. bovis HC5 cells, and 3) semi-purified and the feed additive monensin were affecting the same types of ammonia-producing ruminal bacteria. Because purified and semi-purified bovicin HC5 was as effective as S. bovis HC5 cells, it appeared that bovicin HC5 was penetrating the cell membranes of HAB before it could be degraded by peptidases and proteinases. Mixed ruminal bacteria that were successively transferred and enriched nine times with trypticase did not become significantly more resistant to either bovicin HC5 (50 AU mL−1) or monensin (5 μM), and amplified rDNA restriction analysis indicated that bovicin HC5 and monensin appeared to be selecting against the same types of bacteria
    corecore