5 research outputs found

    Cellular analysis of SOD1 protein-aggregation propensity and toxicity: a case of ALS with slow progression harboring homozygous SOD1-D92G mutation

    Get PDF
    Mutations within Superoxide dismutase 1 (SOD1) cause amyotrophic lateral sclerosis (ALS), accounting for approximately 20% of familial cases. The pathological feature is a loss of motor neurons with enhanced formation of intracellular misfolded SOD1. Homozygous SOD1-D90A in familial ALS has been reported to show slow disease progression. Here, we reported a rare case of a slowly progressive ALS patient harboring a novel SOD1 homozygous mutation D92G (homD92G). The neuronal cell line overexpressing SOD1-D92G showed a lower ratio of the insoluble/soluble fraction of SOD1 with fine aggregates of the misfolded SOD1 and lower cellular toxicity than those overexpressing SOD1-G93A, a mutation that generally causes rapid disease progression. Next, we analyzed spinal motor neurons derived from induced pluripotent stem cells (iPSC) of a healthy control subject and ALS patients carrying SOD1-homD92G or heterozygous SOD1-L144FVX mutation. Lower levels of misfolded SOD1 and cell loss were observed in the motor neurons differentiated from patient-derived iPSCs carrying SOD1-homD92G than in those carrying SOD1-L144FVX. Taken together, SOD1-homD92G has a lower propensity to aggregate and induce cellular toxicity than SOD1-G93A or SOD1-L144FVX, and these cellular phenotypes could be associated with the clinical course of slowly progressive ALS

    Striatal-Inoculation of α-Synuclein Preformed Fibrils Aggravated the Phenotypes of REM Sleep without Atonia in A53T BAC-SNCA Transgenic Mice

    No full text
    Accumulation of α-synuclein (α-syn) is the pathological hallmark of α-synucleinopathy. Rapid eye movement (REM) sleep behavior disorder (RBD) is a pivotal manifestation of α-synucleinopathy including Parkinson’s disease (PD). RBD is clinically confirmed by REM sleep without atonia (RWA) in polysomnography. To accurately characterize RWA preceding RBD and their underlying α-syn pathology, we inoculated α-syn preformed fibrils (PFFs) into the striatum of A53T human α-syn BAC transgenic (A53T BAC-SNCA Tg) mice which exhibit RBD-like phenotypes with RWA. RWA phenotypes were aggravated by PFFs-inoculation in A53T BAC-SNCA Tg mice at 1 month after inoculation, in which prominent α-syn pathology in the pedunculopontine nucleus (PPN) was observed. The intensity of RWA phenotype could be dependent on the severity of the underlying α-syn pathology
    corecore