48 research outputs found

    Identification of conformational epitopes for human IgG on Chemotaxis inhibitory protein of Staphylococcus aureus

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The Chemotaxis inhibitory protein of <it>Staphylococcus aureus </it>(CHIPS) blocks the Complement fragment C5a receptor (C5aR) and formylated peptide receptor (FPR) and is thereby a potent inhibitor of neutrophil chemotaxis and activation of inflammatory responses. The majority of the healthy human population has antibodies against CHIPS that have been shown to interfere with its function <it>in vitro</it>. The aim of this study was to define potential epitopes for human antibodies on the CHIPS surface. We also initiate the process to identify a mutated CHIPS molecule that is not efficiently recognized by preformed anti-CHIPS antibodies and retains anti-inflammatory activity.</p> <p>Results</p> <p>In this paper, we panned peptide displaying phage libraries against a pool of CHIPS specific affinity-purified polyclonal human IgG. The selected peptides could be divided into two groups of sequences. The first group was the most dominant with 36 of the 48 sequenced clones represented. Binding to human affinity-purified IgG was verified by ELISA for a selection of peptide sequences in phage format. For further analysis, one peptide was chemically synthesized and antibodies affinity-purified on this peptide were found to bind the CHIPS molecule as studied by ELISA and Surface Plasmon Resonance. Furthermore, seven potential conformational epitopes responsible for antibody recognition were identified by mapping phage selected peptide sequences on the CHIPS surface as defined in the NMR structure of the recombinant CHIPS<sub>31–121 </sub>protein. Mapped epitopes were verified by <it>in vitro </it>mutational analysis of the CHIPS molecule. Single mutations introduced in the proposed antibody epitopes were shown to decrease antibody binding to CHIPS. The biological function in terms of C5aR signaling was studied by flow cytometry. A few mutations were shown to affect this biological function as well as the antibody binding.</p> <p>Conclusion</p> <p>Conformational epitopes recognized by human antibodies have been mapped on the CHIPS surface and amino acid residues involved in both antibody and C5aR interaction could be defined. This information has implications for the development of an effective anti-inflammatory agent based on a functional CHIPS molecule with low interaction with human IgG.</p

    Predicting therapy response to mycophenolic acid using UGT1A9 genotyping: towards personalized medicine in atopic dermatitis

    Get PDF
    Atopic dermatitis (AD) is a very common chronic inflammatory skin disease requiring long-term treatment. Mycophenolic acid (MPA) is used off-label in treatment of patients with severe AD failing Cyclosporin A (CsA) treatment, however clinical efficacy is observed in only half of the AD patients. In blood, MPA levels are known to have a large interindividual variability. Low MPA exposure and increased enzyme activity correlates with the presence of UGT1A9 polymorphisms. In this retrospective study, 65 adult AD patients treated with MPA were classified as responder or non-responder to MPA treatment. UGT1A9 polymorphisms were determined using PCR. A significantly higher number of UGT1A9 polymorphisms was found in the group that did not respond to MPA treatment. Of the patients that carried a UGT1A9 polymorphism, 85.7% were non-responsive to MPA treatment. This implies that non-responsiveness in AD patients is more likely to occur in carriers of a UGT1A9 polymorphism. In a binary logistic regression analysis the odds ratio (OR) was 8.65 (95% confidence interval: 0.93–80.17). Our results show that UGT1A9 polymorphisms can be used to identify patients with non-responsiveness to MPA. Patients with UGT1A9 polymorphisms might benefit from higher MPA dosage

    The thermodynamics of Pr55Gag-RNA interaction regulate the assembly of HIV

    Get PDF
    The interactions that occur during HIV Pr55Gag oligomerization and genomic RNA packagingare essential elements that facilitate HIV assembly. However, mechanistic details ofthese interactions are not clearly defined. Here, we overcome previous limitations in producinglarge quantities of full-length recombinant Pr55Gag that is required for isothermal titrationcalorimetry (ITC) studies, and we have revealed the thermodynamic properties of HIVassembly for the first time. Thermodynamic analysis showed that the binding between RNAand HIV Pr55Gag is an energetically favourable reaction (&Delta;G&lt;0) that is further enhanced bythe oligomerization of Pr55Gag. The change in enthalpy (&Delta;H) widens sequentially from: (1)Pr55Gag-Psi RNA binding during HIV genome selection; to (2) Pr55Gag-Guanosine Uridine(GU)-containing RNA binding in cytoplasm/plasma membrane; and then to (3) Pr55Gag-Adenosine(A)-containing RNA binding in immature HIV. These data imply the stepwiseincrements of heat being released during HIV biogenesis may help to facilitate the processof viral assembly. By mimicking the interactions between A-containing RNA and oligomericPr55Gag in immature HIV, it was noted that a p6 domain truncated Pr50Gag &Delta;p6 is less efficientthan full-length Pr55Gag in this thermodynamic process. These data suggest a potentialunknown role of p6 in Pr55Gag-Pr55Gag oligomerization and/or Pr55Gag-RNA interaction duringHIV assembly. Our data provide direct evidence on how nucleic acid sequences and theoligomeric state of Pr55Gag regulate HIV assembly

    Labeling of Multiple HIV-1 Proteins with the Biarsenical-Tetracysteine System

    Get PDF
    Due to its small size and versatility, the biarsenical-tetracysteine system is an attractive way to label viral proteins for live cell imaging. This study describes the genetic labeling of the human immunodeficiency virus type 1 (HIV-1) structural proteins (matrix, capsid and nucleocapsid), enzymes (protease, reverse transcriptase, RNAse H and integrase) and envelope glycoprotein 120 with a tetracysteine tag in the context of a full-length virus. We measure the impact of these modifications on the natural virus infection and, most importantly, present the first infectious HIV-1 construct containing a fluorescently-labeled nucleocapsid protein. Furthermore, due to the high background levels normally associated with the labeling of tetracysteine-tagged proteins we have also optimized a metabolic labeling system that produces infectious virus containing the natural envelope glycoproteins and specifically labeled tetracysteine-tagged proteins that can easily be detected after virus infection of T-lymphocytes. This approach can be adapted to other viral systems for the visualization of the interplay between virus and host cell during infection

    The Bordetella pertussis protein Pertactin: role in immunity and immune evasion

    Get PDF
    Pertussis is a highly contagious infectious disease of the respiratory tract which is caused by Bordetella pertussis. Before widespread introduction of vaccination against pertussis, almost every child contracted pertussis. The disease is most severe in neonates and children under the age of 1. Introduction of mass vaccination reduced the number of pertussis cases significantly and resulted in a 10-fold decrease in pertussis mortality in the Netherlands in the late 1950s. Despite vaccination, pertussis remained endemic. A major epidemic occurred in the Netherlands in 1996. Since the 1996 outbreak, the Netherlands now has an epidemic pertussis cycle with peaks every 2 to 3 years during the last decade. Also in several other European countries, as well as Canada, The United States and Australia, a re-emergence of pertussis was observed. Several explanations were proposed for the sudden increase of pertussis in the Netherlands including waning immunity in adolescents and adults, increased reporting, improved diagnosis of the disease and the adaptation of the B. pertussis population. In the Netherlands, pathogen adaptation has probably played an important role in the resurgence of pertussis. Vaccine adapted strains showed polymorphisms in two proteins implicated in protective immunity: P.69 Prn and Ptx. The role of P.69 Prn in protective immunity has been well documented in both humans and in animal models. Furthermore, P.69 Prn is present in several of the currently most used ACVs. Until recently, relatively little was known about the antibody response to P.69 Prn, the location of epitopes on P.69 Prn and the role of variation in Prn on immune evasion. Variation in the variable region1 was described to affect the Ab response to this region, but no direct evidence or a feasible mechanism for immune evasion was described. The goal of this thesis was to identify the location of (protective) epitopes to which human Abs are directed, and to investigate the role of variation in P.69 Prn and the implications for the anti-P.69 Prn Ab response. Our results clearly indicate that Prn has evolved several ways to escape antibody and possibly phage binding. We showed that the N-terminus of P.69 Prn harbors important epitopes. Furthermore, our data suggests that the variable region1 has evolved to hide those important epitopes from immune recognition and possibly phage binding. In addition, Prn has several other flexible (and variable) loops that are employed to hide adjacent epitopes from the immune system (epitope masking). The N- and C-termini of P.69 Prn interact physically, which results in the masking of a part of Prn. Since the C-terminus has a linear structure that folds towards the N-terminus, it is likely that the Ab response to this region is less efficient then an Ab response directed to the conformational epitopes located in parts of the molecule that are covered by the C-terminus (conformational masking). The loops that are exposed, e.g. region1, region2, and several other loops, were shown to be highly variable (antigenic variation). We showed that deletion of the variable regions does not improve protection against infection. Apparently deletion of the decoy regions does not automatically skew the Ab response towards the conserved protective epitopes. However, we have shown that it is possible to employ synthetic peptides to induce a protective response towards conserved and protective epitopes. The results presented in this thesis have shed new light on the mechanisms employed by bacteria, and B. pertussis in particular, to evade immune recognition. These results will facilitate the development of new, possibly synthetic, but mainly more effective vaccines

    Membrane Remodeling by the Double-Barrel Scaffolding Protein of Poxvirus

    Get PDF
    In contrast to most enveloped viruses, poxviruses produce infectious particles that do not acquire their internal lipid membrane by budding through cellular compartments. Instead, poxvirus immature particles are generated from atypical crescent-shaped precursors whose architecture and composition remain contentious. Here we describe the 2.6 A Ëš crystal structure of vaccinia virus D13, a key structural component of the outer scaffold of viral crescents. D13 folds into two jellyrolls decorated by a head domain of novel fold. It assembles into trimers that are homologous to the double-barrel capsid proteins of adenovirus and lipid-containing icosahedral viruses. We show that, when tethered onto artificial membranes, D13 forms a honeycomb lattice and assembly products structurally similar to the viral crescents and immature particles. The architecture of the D13 honeycomb lattice and the lipid-remodeling abilities of D13 support a model of assembly that exhibits similarities with the giant mimivirus. Overall, these findings establish that the first committed step of poxvirus morphogenesis utilizes an ancestral lipid-remodeling strategy common to icosahedral DNA viruses infecting all kingdoms of life. Furthermore, D13 is the target of rifampicin and its structure will aid the development of poxviru

    Epitope Structure of the Bordetella pertussis Protein P.69 Pertactin, a Major Vaccine Component and Protective Antigen

    No full text
    Bordetella pertussis is reemerging in several countries with a traditionally high vaccine uptake. An analysis of clinical isolates revealed antigenic divergence between vaccine strains and circulating strains with respect to P.69 pertactin. Polymorphisms in P.69 pertactin are mainly limited to regions comprised of amino acid repeats, designated region 1 and region 2. Region 1 flanks the RGD motif, which is involved in adherence. Although antibodies against P.69 pertactin are implicated in protective immunity, little is known about the structure and location of its epitopes. Here we describe the identification by pepscan analysis of the locations of mainly linear epitopes recognized by human sera and mouse monoclonal antibodies (MAbs). A total of 24 epitopes were identified, and of these only 2 were recognized by both MAbs and human antibodies in serum. A number of immunodominant epitopes were identified which were recognized by 78 to 93% of the human sera tested. Blocking experiments indicated the presence of high-avidity human antibodies against conformational epitopes. Human antibodies against linear epitopes had much lower avidities, as they were unable to block MAbs. Pepscan analyses revealed several MAbs which bound to both region 1 and region 2. The two regions are separated by 289 amino acids in the primary structure, and we discuss the possibility that they form a single conformational epitope. Thus, both repeat regions may serve to deflect the immune response targeted to the functional domain of P.69 pertactin. This may explain why the variation in P.69 pertactin is so effective, despite the fact that it is limited to only two small segments of the molecule

    HIV-1 Pr55(Gag) binds genomic and spliced RNAs with different affinity and stoichiometry

    Full text link
    The HIV-1 Pr55(Gag) precursor specifically selects genomic RNA (gRNA) from a large variety of cellular and spliced viral RNAs (svRNAs), however the molecular mechanisms of this selective recognition remains poorly understood. To gain better understanding of this process, we analyzed the interactions between Pr55(Gag) and a large panel of viral RNA (vRNA) fragments encompassing the main packaging signal (Psi) and its flanking regions by fluorescence spectroscopy. We showed that the gRNA harbors a high affinity binding site which is absent from svRNA species, suggesting that this site might be crucial for selecting the HIV-1 genome. Our stoichiometry analysis of protein/RNA complexes revealed that few copies of Pr55(Gag) specifically associate with the 5\u27 region of the gRNA. Besides, we found that gRNA dimerization significantly impacts Pr55(Gag) binding, and we confirmed that the internal loop of stem-loop 1 (SL1) in Psi is crucial for specific interaction with Pr55(Gag). Our analysis of gRNA fragments of different length supports the existence of a long-range tertiary interaction involving sequences upstream and downstream of the Psi region. This long-range interaction might promote optimal exposure of SL1 for efficient Pr55(Gag) recognition. Altogether, our results shed light on the molecular mechanisms allowing the specific selection of gRNA by Pr55(Gag) among a variety of svRNAs, all harboring SL1 in their first common exon

    Mutational interference mapping experiment (MIME) for studying RNA structure and function

    Full text link
    RNA regulates many biological processes; however, identifying functional RNA sequences and structures is complex and time-consuming. We introduce a method, mutational interference mapping experiment (MIME), to identify, at single-nucleotide resolution, the primary sequence and secondary structures of an RNA molecule that are crucial for its function. MIME is based on random mutagenesis of the RNA target followed by functional selection and next-generation sequencing. Our analytical approach allows the recovery of quantitative binding parameters and permits the identification of base-pairing partners directly from the sequencing data. We used this method to map the binding site of the human immunodeficiency virus-1 (HIV-1) Pr55(Gag) protein on the viral genomic RNA in vitro, and showed that, by analyzing permitted base-pairing patterns, we could model RNA structure motifs that are crucial for protein binding
    corecore