98 research outputs found

    Bilayer Indium Tin Oxide Electrodes for Deformation-Free Ultrathin Flexible Perovskite Solar Cells

    Get PDF
    The superior electrical conductivity and optical transparency of indium tin oxide (ITO) make it an ideal electrode material for use in optoelectronic devices such as solar cells. When ITO electrodes are fabricated on very thin plastic substrates, however, the internal stress of the ITO layer causes the substrate to deform, severely limiting the device's performance. Herein, it is shown that ITO bilayers composed of an amorphous base layer and a crystalline overlayer lead to deformation-free ITO electrodes. It is shown that an optimized bilayer structure is achieved when the internal stresses of the amorphous and crystalline layers approximately cancel. With this approach, mixed composition metal halide perovskite solar cells with ITO electrodes are successfully fabricated on 4 μm polyethylene naphthalate films. A power conversion efficiency (PCE) of 18.2% is obtained for the reference cell design, corresponding to a power-to-weight ratio of 24 W g−1 before encapsulation. The devices retain 95% of the original PCE after 1000 bend cycles, while under simulated indoor lighting (white LED, 200 lux, 5000 K) the PCE reaches 28.3%. A 3-cell module with a designated area of 2.3 cm² is realized with a power output of 28.1 mW and an open-circuit voltage of 3.17 V

    Three-dimensional Structure of Nylon Hydrolase and Mechanism of Nylon-6 Hydrolysis

    Get PDF
    This research was originally published in the Journal of Biological Chemistry. Seiji Negoro, Naoki Shibata, Yusuke Tanaka, Kengo Yasuhira, Hiroshi Shibata, Haruka Hashimoto, Young-Ho Lee, Shohei Oshima, Ryuji Santa, Shohei Oshima, Kozo Mochiji, Yuji Goto, Takahisa Ikegami, Keisuke Nagai, Dai-ichiro Kato, Masahiro Takeo and Yoshiki Higuchi. Three-dimensional Structure of Nylon Hydrolase and Mechanism of Nylon-6 Hydrolysis. J. Biol. Chem. 2012; 287, 5079-5090. © the American Society for Biochemistry and Molecular Biolog

    Cytotoxic T Lymphocytes Regenerated from iPS Cells Have Therapeutic Efficacy in a Patient-Derived Xenograft Solid Tumor Model

    Get PDF
    Current adoptive T cell therapies conducted in an autologous setting are costly, time consuming, and depend on the quality of the patient's T cells. To address these issues, we developed a strategy in which cytotoxic T lymphocytes (CTLs) are regenerated from iPSCs that were originally derived from T cells and succeeded in regenerating CTLs specific for the WT1 antigen, which exhibited therapeutic efficacy in a xenograft model of leukemia. In this study, we extended our strategy to solid tumors. The regenerated WT1-specific CTLs had a strong therapeutic effect in orthotopic xenograft model using a renal cell carcinoma (RCC) cell line. To make our method more generally applicable, we developed an allogeneic approach by transducing HLA-haplotype homozygous iPSCs with WT1-specific TCR α/β genes that had been tested clinically. The regenerated CTLs antigen-specifically suppressed tumor growth in a patient-derived xenograft model of RCC, demonstrating the feasibility of our strategy against solid tumors

    Redox-dependent conformational changes of a proximal [4Fe-4S] cluster in Hyb-type [NiFe]-hydrogenase to protect the active site from O2

    Get PDF
    Citrobacter sp. S-77 [NiFe]-hydrogenase harbors a standard [4Fe–4S] cluster proximal to the Ni–Fe active site. The presence of relocatable water molecules and a flexible aspartate enables the [4Fe–4S] to display redox-dependent conformational changes. These structural features are proposed to be the key aspects that protect the active site from O2 attack

    First Data Release of the Hyper Suprime-Cam Subaru Strategic Program

    Full text link
    The Hyper Suprime-Cam Subaru Strategic Program (HSC-SSP) is a three-layered imaging survey aimed at addressing some of the most outstanding questions in astronomy today, including the nature of dark matter and dark energy. The survey has been awarded 300 nights of observing time at the Subaru Telescope and it started in March 2014. This paper presents the first public data release of HSC-SSP. This release includes data taken in the first 1.7 years of observations (61.5 nights) and each of the Wide, Deep, and UltraDeep layers covers about 108, 26, and 4 square degrees down to depths of i~26.4, ~26.5, and ~27.0 mag, respectively (5sigma for point sources). All the layers are observed in five broad bands (grizy), and the Deep and UltraDeep layers are observed in narrow bands as well. We achieve an impressive image quality of 0.6 arcsec in the i-band in the Wide layer. We show that we achieve 1-2 per cent PSF photometry (rms) both internally and externally (against Pan-STARRS1), and ~10 mas and 40 mas internal and external astrometric accuracy, respectively. Both the calibrated images and catalogs are made available to the community through dedicated user interfaces and database servers. In addition to the pipeline products, we also provide value-added products such as photometric redshifts and a collection of public spectroscopic redshifts. Detailed descriptions of all the data can be found online. The data release website is https://hsc-release.mtk.nao.ac.jp/.Comment: 34 pages, 20 figures, 7 tables, moderate revision, accepted for publication in PAS

    Elevated β-catenin pathway as a novel target for patients with resistance to EGF receptor targeting drugs

    Get PDF
    There is a high death rate of lung cancer patients. Epidermal growth factor receptor tyrosine kinase inhibitors (EGFR-TKIs) are effective in some lung adenocarcinoma patients with EGFR mutations. However, a significant number of patients show primary and acquire resistance to EGFR-TKIs. Although the Akt kinase is commonly activated due to various resistance mechanisms, the key targets of Akt remain unclear. Here, we show that the Akt-β-catenin pathway may be a common resistance mechanism. We analyzed gene expression profiles of gefitinib-resistant PC9M2 cells that were derived from gefitinib-sensitive lung cancer PC9 cells and do not have known resistance mechanisms including EGFR mutation T790M. We found increased expression of Axin, a β-catenin target gene, increased phosphorylation of Akt and GSK3, accumulation of β-catenin in the cytoplasm/nucleus in PC9M2 cells. Both knockdown of β-catenin and treatment with a β-catenin inhibitor at least partially restored gefitinib sensitivity to PC9M2 cells. Lung adenocarcinoma tissues derived from gefitinib-resistant patients displayed a tendency to accumulate β-catenin in the cytoplasm. We provide a rationale for combination therapy that includes targeting of the Akt-β-catenin pathway to improve the efficacy of EGFR-TKIs
    corecore