4,603 research outputs found

    Loop Model with Generalized Fugacity in Three Dimensions

    Full text link
    A statistical model of loops on the three-dimensional lattice is proposed and is investigated. It is O(n)-type but has loop fugacity that depends on global three-dimensional shapes of loops in a particular fashion. It is shown that, despite this non-locality and the dimensionality, a layer-to-layer transfer matrix can be constructed as a product of local vertex weights for infinitely many points in the parameter space. Using this transfer matrix, the site entropy is estimated numerically in the fully packed limit.Comment: 16pages, 4 eps figures, (v2) typos and Table 3 corrected. Refs added, (v3) an error in an explanation of fig.2 corrected. Refs added. (v4) Changes in the presentatio

    On the universality of compact polymers

    Full text link
    Fully packed loop models on the square and the honeycomb lattice constitute new classes of critical behaviour, distinct from those of the low-temperature O(n) model. A simple symmetry argument suggests that such compact phases are only possible when the underlying lattice is bipartite. Motivated by the hope of identifying further compact universality classes we therefore study the fully packed loop model on the square-octagon lattice. Surprisingly, this model is only critical for loop weights n < 1.88, and its scaling limit coincides with the dense phase of the O(n) model. For n=2 it is exactly equivalent to the selfdual 9-state Potts model. These analytical predictions are confirmed by numerical transfer matrix results. Our conclusions extend to a large class of bipartite decorated lattices.Comment: 13 pages including 4 figure

    Radiation reaction on charged particles in three-dimensional motion in classical and quantum electrodynamics

    Full text link
    We extend our previous work (see arXiv:quant-ph/0501026), which compared the predictions of quantum electrodynamics concerning radiation reaction with those of the Abraham-Lorentz-Dirac theory for a charged particle in linear motion. Specifically, we calculate the predictions for the change in position of a charged scalar particle, moving in three-dimensional space, due to the effect of radiation reaction in the one-photon-emission process in quantum electrodynamics. The scalar particle is assumed to be accelerated for a finite period of time by a three-dimensional electromagnetic potential dependent only on one of the spacetime coordinates. We perform this calculation in the 0\hbar\to 0 limit and show that the change in position agrees with that obtained in classical electrodynamics with the Lorentz-Dirac force treated as a perturbation. We also show for a time-dependent but space-independent electromagnetic potential that the forward-scattering amplitude at order e2e^2 does not contribute to the position change in the 0\hbar \to 0 limit after the mass renormalization is taken into account.Comment: Latex, 20page

    The packing of two species of polygons on the square lattice

    Full text link
    We decorate the square lattice with two species of polygons under the constraint that every lattice edge is covered by only one polygon and every vertex is visited by both types of polygons. We end up with a 24 vertex model which is known in the literature as the fully packed double loop model. In the particular case in which the fugacities of the polygons are the same, the model admits an exact solution. The solution is obtained using coordinate Bethe ansatz and provides a closed expression for the free energy. In particular we find the free energy of the four colorings model and the double Hamiltonian walk and recover the known entropy of the Ice model. When both fugacities are set equal to two the model undergoes an infinite order phase transition.Comment: 21 pages, 4 figure

    CBR Temperature Fluctuations Induced by Gravitational Waves in a Spatially-Closed Inflationary Universe

    Full text link
    Primordial gravitational waves are created during the de Sitter phase of an exponentially-expanding (inflationary) universe, due to quantum zero-point vacuum fluctuations. These waves produce fluctuations in the temperature of the Cosmic Background Radiation (CBR). We calculate the multipole moments of the correlation function for these temperature fluctuations in a spatially-closed Friedman-Robertson-Walker (FRW) cosmological model. The results are compared to the corresponding multipoles in the spatially-flat case. The differences are small unless the density parameter today, Ω0\Omega_0, is greater than 2. (Submitted to Physical Review D).Comment: 18 pages of RevTex + 3 uuencoded postscript figure

    Scalar Field Quantum Inequalities in Static Spacetimes

    Get PDF
    We discuss quantum inequalities for minimally coupled scalar fields in static spacetimes. These are inequalities which place limits on the magnitude and duration of negative energy densities. We derive a general expression for the quantum inequality for a static observer in terms of a Euclidean two-point function. In a short sampling time limit, the quantum inequality can be written as the flat space form plus subdominant correction terms dependent upon the geometric properties of the spacetime. This supports the use of flat space quantum inequalities to constrain negative energy effects in curved spacetime. Using the exact Euclidean two-point function method, we develop the quantum inequalities for perfectly reflecting planar mirrors in flat spacetime. We then look at the quantum inequalities in static de~Sitter spacetime, Rindler spacetime and two- and four-dimensional black holes. In the case of a four-dimensional Schwarzschild black hole, explicit forms of the inequality are found for static observers near the horizon and at large distances. It is show that there is a quantum averaged weak energy condition (QAWEC), which states that the energy density averaged over the entire worldline of a static observer is bounded below by the vacuum energy of the spacetime. In particular, for an observer at a fixed radial distance away from a black hole, the QAWEC says that the averaged energy density can never be less than the Boulware vacuum energy density.Comment: 27 pages, 2 Encapsulated Postscript figures, uses epsf.tex, typeset in RevTe

    Weak gravity in DGP braneworld model

    Get PDF
    We analyze the weak gravity in the braneworld model proposed by Dvali-Gabadadze-Porrati, in which the unperturbed background spacetime is given by five dimensional Minkowski bulk with a brane which has the induced Einstein Hilbert term. This model has a critical length scale rcr_c. Naively, we expect that the four dimensional general relativity (4D GR) is approximately recovered at the scale below rcr_c. However, the simple linear perturbation does not work in this regime. Only recently the mechanism to recover 4D GR was clarified under the restriction to spherically symmetric configurations, and the leading correction to 4D GR was derived. Here, we develop an alternative formulation which can handle more general perturbations. We also generalize the model by adding bulk cosmological constant and the brane tension.Comment: 7 pages, 1 figure, references adde

    Random-cluster representation of the Blume-Capel model

    Full text link
    The so-called diluted-random-cluster model may be viewed as a random-cluster representation of the Blume--Capel model. It has three parameters, a vertex parameter aa, an edge parameter pp, and a cluster weighting factor qq. Stochastic comparisons of measures are developed for the `vertex marginal' when q[1,2]q\in[1,2], and the `edge marginal' when q\in[1,\oo). Taken in conjunction with arguments used earlier for the random-cluster model, these permit a rigorous study of part of the phase diagram of the Blume--Capel model

    On Infrared Effects in de~Sitter Background

    Full text link
    We have estimated higher order quantum gravity corrections to de~Sitter spacetime. Our results suggest that, while the classical spacetime metric may be distorted by the graviton self-interactions, the corrections are relatively weaker than previously thought, possibly growing like a power rather than exponentially in time.Comment: 17, UM-TH-94-11, (1 postscript fig. at end

    Scalar radiation emitted from a source rotating around a black hole

    Full text link
    We analyze the scalar radiation emitted from a source rotating around a Schwarzschild black hole using the framework of quantum field theory at the tree level. We show that for relativistic circular orbits the emitted power is about 20% to 30% smaller than what would be obtained in Minkowski spacetime. We also show that most of the emitted energy escapes to infinity. Our formalism can readily be adapted to investigate similar processes.Comment: 19 pages (REVTEX), 5 figures, title slightly changed, extra demonstration and minor improvements included. To appear in Class. Quant. Gra
    corecore