5,216 research outputs found
Do static sources outside a Schwarzschild black hole radiate?
We show that static sources coupled to a massless scalar field in
Schwarzschild spacetime give rise to emission and absorption of zero-energy
particles due to the presence of Hawking radiation. This is in complete analogy
with the description of the bremsstrahlung by a uniformly accelerated charge
from the coaccelerated observers' point of view. The response rate of the
source is found to coincide with that in Minkowski spacetime as a function of
its proper acceleration. This result may be viewed as restoration of the
equivalence principle by the Hawking effect.Comment: 13 page
SO(4) Invariant States in Quantum Cosmology
The phenomenon of linearisation instability is identified in models of
quantum cosmology that are perturbations of mini-superspace models. In
particular, constraints that are second order in the perturbations must be
imposed on wave functions calculated in such models. It is shown explicitly
that in the case of a model which is a perturbation of the mini-superspace
which has spatial sections these constraints imply that any wave
functions calculated in this model must be SO(4) invariant. (This replaces the
previous corrupted version.)Comment: 15 page
Low-frequency absorption cross section of the electromagnetic waves for the extreme Reissner-Nordstrom black holes in higher dimensions
We investigate the low-frequency absorption cross section of the
electromagnetic waves for the extreme Reissner-Nordstrom black holes in higher
dimensions. We first construct the exact solutions to the relevant wave
equations in the zero-frequency limit. In most cases it is possible to use
these solutions to find the transmission coefficients of partial waves in the
low-frequency limit. We use these transmission coefficients to calculate the
low-frequency absorption cross section in five and six spacetime dimensions. We
find that this cross section is dominated by the modes with l=2 in the
spherical-harmonic expansion rather than those with l=1, as might have been
expected, because of the mixing between the electromagnetic and gravitational
waves. We also find an upper limit for the low-frequency absorption cross
section in dimensions higher than six.Comment: 7 pages, 1 figure, Phys. Rev. D (to appear
The Unruh effect and its applications
It has been thirty years since the discovery of the Unruh effect. It has
played a crucial role in our understanding that the particle content of a field
theory is observer dependent. This effect is important in its own right and as
a way to understand the phenomenon of particle emission from black holes and
cosmological horizons. Here, we review the Unruh effect with particular
emphasis to its applications. We also comment on a number of recent
developments and discuss some controversies. Effort is also made to clarify
what seems to be common misconceptions.Comment: 53 pages, 11 figures, submitted to Reviews of Modern Physic
Interaction of Hawking radiation and a static electric charge
We investigate whether the equality found for the response of static scalar
sources interacting (i) with {\em Hawking radiation in Schwarzschild spacetime}
and (ii) with the Fulling-Davies-Unruh thermal bath in the Rindler wedge is
maintained in the case of electric charges. We find a finite result in the
Schwarzschild case, which is computed exactly, in contrast with the divergent
result associated with the infrared catastrophe in the Rindler case, i.e. in
the case of uniformly accelerated charges in Minkowski spacetime. Thus, the
equality found for scalar sources does not hold for electric charges.Comment: 8 pages (REVTEX
Do static sources respond to massive scalar particles from the Hawking radiation as uniformly accelerated ones do in the inertial vacuum?
We revisit the recently found equivalence for the response of a static scalar
source interacting with a {\em massless} Klein-Gordon field when the source is
(i) static in Schwarzschild spacetime, in the Unruh vacuum associated with the
Hawking radiation and (ii) uniformly accelerated in Minkowski spacetime, in the
inertial vacuum, provided that the source's proper acceleration is the same in
both cases. It is shown that this equivalence is broken when the massless
Klein-Gordon field is replaced by a {\em massive} one.Comment: 4 pages, 2 figure
Interaction of Hawking radiation with static sources in deSitter and Schwarzschild-deSitter spacetimes
We study and look for similarities between the response rates and of a static scalar source
with constant proper acceleration interacting with a massless,
conformally coupled Klein-Gordon field in (i) deSitter spacetime, in the
Euclidean vacuum, which describes a thermal flux of radiation emanating from
the deSitter cosmological horizon, and in (ii) Schwarzschild-deSitter
spacetime, in the Gibbons-Hawking vacuum, which describes thermal fluxes of
radiation emanating from both the hole and the cosmological horizons,
respectively, where is the cosmological constant and is the black
hole mass. After performing the field quantization in each of the above
spacetimes, we obtain the response rates at the tree level in terms of an
infinite sum of zero-energy field modes possessing all possible angular
momentum quantum numbers. In the case of deSitter spacetime, this formula is
worked out and a closed, analytical form is obtained. In the case of
Schwarzschild-deSitter spacetime such a closed formula could not be obtained,
and a numerical analysis is performed. We conclude, in particular, that and do not coincide in
general, but tend to each other when or . Our
results are also contrasted and shown to agree (in the proper limits) with
related ones in the literature.Comment: ReVTeX4 file, 9 pages, 5 figure
Decay of the free-theory vacuum of scalar field theory in de Sitter spacetime in the interaction picture
A free-theory vacuum state of an interacting field theory, e.g. quantum
gravity, is unstable at tree level in general due to spontaneous emission of
Fock-space particles in any spacetime with no global timelike Killing vectors,
such as de Sitter spacetime, in the interaction picture. As an example, the
rate of spontaneous emission of Fock-space particles is calculated in phi^4
theory in de Sitter spacetime. It is possible that this apparent spontaneous
emission does not correspond to any physical processes because the states are
not evolved by the true Hamiltonian in the interaction picture. Nevertheless,
the constant spontaneous emission of Fock-space particles in the interaction
picture clearly demonstrates that the in- and out-vacuum states are orthogonal
to each other as emphasized by Polyakov and that the in-out perturbation
theory, which presupposes some overlap between these two vacuum states, is
inadequate. Other possible implications of apparent vacuum instability of this
kind in the interaction picture are also discussed.Comment: title changed, 7 page
Group Averaging for de Sitter free fields
Perturbative gravity about global de Sitter space is subject to
linearization-stability constraints. Such constraints imply that quantum states
of matter fields couple consistently to gravity {\it only} if the matter state
has vanishing de Sitter charges; i.e., only if the state is invariant under the
symmetries of de Sitter space. As noted by Higuchi, the usual Fock spaces for
matter fields contain no de Sitter-invariant states except the vacuum, though a
new Hilbert space of de Sitter invariant states can be constructed via
so-called group-averaging techniques. We study this construction for free
scalar fields of arbitrary positive mass in any dimension, and for linear
vector and tensor gauge fields in any dimension. Our main result is to show in
each case that group averaging converges for states containing a sufficient
number of particles. We consider general -particle states with smooth
wavefunctions, though we obtain somewhat stronger results when the
wavefunctions are finite linear combinations of de Sitter harmonics. Along the
way we obtain explicit expressions for general boost matrix elements in a
familiar basis.Comment: 33 pages, 2 figure
- …