23 research outputs found

    Spatial Effects of the Social Marketing of Insecticide-Treated Nets on Malaria Morbidity.

    Get PDF
    Randomized controlled trials have shown that insecticide-treated nets (ITNs) have an impact on both malaria morbidity and mortality. Uniformly high coverage of ITNs characterized these trials and this resulted in some protection of nearby non-users of ITNs. We have now assessed the coverage, distribution pattern and resultant spatial effects in one village in Tanzania where ITNs were distributed in a social marketing programme. The prevalence of parasitaemia, mild anaemia (Hb <11 g/dl) and moderate/severe anaemia (Hb <8 g/dl) in children under five was assessed cross-sectionally. Data on ownership of ITNs were collected and inhabitants' houses were mapped. One year after the start of the social marketing programme, 52% of the children were using a net which had been treated at least once. The ITNs were rather homogeneously distributed throughout the village at an average density of about 118 ITNs per thousand population. There was no evidence of a pattern in the distribution of parasitaemia and anaemia cases, but children living in areas of moderately high ITN coverage were about half as likely to have moderate/severe anaemia (OR 0.5, 95% CI: 0.2, 0.9) and had lower prevalence of splenomegaly, irrespective of their net use. No protective effects of coverage were found for prevalence of mild anaemia nor for parasitaemia. The use of untreated nets had neither coverage nor short distance effects. More efforts should be made to ensure high coverage in ITNs programmes to achieve maximum benefit

    Mapping of mosquito breeding sites in malaria endemic areas in Pos Lenjang, Kuala Lipis, Pahang, Malaysia

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The application of the Geographic Information Systems (GIS) to the study of vector transmitted diseases considerably improves the management of the information obtained from the field survey and facilitates the study of the distribution patterns of the vector species.</p> <p>Methods</p> <p>As part of a study to assess remote sensing data as a tool for vector mapping, geographical features like rivers, small streams, forest, roads and residential area were digitized from the satellite images and overlaid with entomological data. Map of larval breeding habitats distribution and map of malaria transmission risk area were developed using a combination of field data, satellite image analysis and GIS technique. All digital data in the GIS were displayed in the WGS 1984 coordinate system. Six occasions of larval surveillance were also conducted to determine the species of mosquitoes, their characteristics and the abundance of habitats.</p> <p>Results</p> <p>Larval survey studies showed that anopheline and culicine larvae were collected and mapped from 79 and 67 breeding sites respectively. Breeding habitats were located at 100-400 m from human settlement. Map of villages with 400 m buffer zone visualizes that more than 80% of <it>Anopheles maculatus s.s</it>. immature habitats were found within the buffer zone.</p> <p>Conclusions</p> <p>This study amplifies the need for a broadening of the GIS approach which is emphasized with the aim of rejuvenating the dynamic aspect of entomological studies in Malaysia. In fact, the use of such basic GIS platforms promote a more rational basis for strategic planning and management in the control of endemic diseases at the national level.</p

    Safety and Efficacy of Dihydroartemisinin-Piperaquine in Falciparum Malaria: A Prospective Multi-Centre Individual Patient Data Analysis

    Get PDF
    BACKGROUND: The fixed dose antimalarial combination of dihydroartemisinin-piperaquine (DP) is a promising new artemisinin-based combination therapy (ACT). We present an individual patient data analysis of efficacy and tolerability in acute uncomplicated falciparum malaria, from seven published randomized clinical trials conducted in Africa and South East Asia using a predefined in-vivo protocol. Comparator drugs were mefloquine-artesunate (MAS3) in Thailand, Myanmar, Laos and Cambodia; artemether-lumefantrine in Uganda; and amodiaquine+sulfadoxine-pyrimethamine and artesunate+amodiaquine in Rwanda. METHODS AND FINDINGS: In total 3,547 patients were enrolled: 1,814 patients (32% children under five years) received DP and 1,733 received a comparator antimalarial at 12 different sites and were followed for 28-63 days. There was no significant heterogeneity between trials. DP was well tolerated with 1.7% early vomiting. There were less adverse events with DP in children and adults compared to MAS3 except for diarrhea; ORs (95%CI) 2.74 (2.13 to 3.51) and 3.11 (2.31 to 4.18), respectively. DP treatment resulted in a rapid clearance of fever and parasitaemia. The PCR genotype corrected efficacy at Day 28 of DP assessed by survival analysis was 98.7% (95%CI 97.6-99.8). DP was superior to the comparator drugs in protecting against both P.falciparum recurrence and recrudescence (P = 0.001, weighted by site). There was no difference between DP and MAS3 in treating P. vivax co-infections and in suppressing the first relapse (median interval to P. vivax recurrence: 6 weeks). Children under 5 y were at higher risk of recurrence for both infections. The proportion of patients developing gametocytaemia (P = 0.002, weighted by site) and the subsequent gametocyte carriage rates were higher with DP (11/1000 person gametocyte week, PGW) than MAS3 (6/1000 PGW, P = 0.001, weighted by site). CONCLUSIONS: DP proved a safe, well tolerated, and highly effective treatment of P.falciparum malaria in Asia and Africa, but the effect on gametocyte carriage was inferior to that of MAS3
    corecore