30 research outputs found

    Characterisation of PDGF-BB:PDGFRβ signalling pathways in human brain pericytes: evidence of disruption in Alzheimer's disease.

    Full text link
    peer reviewedPlatelet-derived growth factor-BB (PDGF-BB):PDGF receptor-β (PDGFRβ) signalling in brain pericytes is critical to the development, maintenance and function of a healthy blood-brain barrier (BBB). Furthermore, BBB impairment and pericyte loss in Alzheimer's disease (AD) is well documented. We found that PDGF-BB:PDGFRβ signalling components were altered in human AD brains, with a marked reduction in vascular PDGFB. We hypothesised that reduced PDGF-BB:PDGFRβ signalling in pericytes may impact on the BBB. We therefore tested the effects of PDGF-BB on primary human brain pericytes in vitro to define pathways related to BBB function. Using pharmacological inhibitors, we dissected distinct aspects of the PDGF-BB response that are controlled by extracellular signal-regulated kinase (ERK) and Akt pathways. PDGF-BB promotes the proliferation of pericytes and protection from apoptosis through ERK signalling. In contrast, PDGF-BB:PDGFRβ signalling through Akt augments pericyte-derived inflammatory secretions. It may therefore be possible to supplement PDGF-BB signalling to stabilise the cerebrovasculature in AD

    Human pericytes degrade diverse α-synuclein aggregates

    No full text
    International audienceParkinson's disease (PD) is a progressive, neurodegenerative disorder characterised by the abnormal accumulation of α-synuclein (α-syn) aggregates. Central to disease progression is the gradual spread of pathological α-syn. α-syn aggregation is closely linked to progressive neuron loss. As such, clearance of α-syn aggregates may slow the progression of PD and lead to less severe symptoms. Evidence is increasing that non-neuronal cells play a role in PD and other synucleinopathies such as Lewy body dementia and multiple system atrophy. Our previous work has shown that pericytes-vascular mural cells that regulate the blood-brain barrier-contain α-syn aggregates in human PD brains. Here, we demonstrate that pericytes efficiently internalise fibrillar α-syn irrespective of being in a monoculture or mixed neuronal cell culture. Pericytes cleave fibrillar α-syn aggregates (Fibrils, Ribbons, fibrils65, fibrils91 and fibrils110), with cleaved α-syn remaining present for up to 21 days. The number of α-syn aggregates/cell and average aggregate size depends on the type of strain, but differences disappear within 5 five hours of treatment. Our results highlight the role brain vasculature may play in reducing α-syn aggregate burden in PD

    fISHing with immunohistochemistry for housekeeping gene changes in Alzheimer's disease using an automated quantitative analysis workflow.

    Full text link
    peer reviewedIn situ hybridization (ISH) is a powerful tool that can be used to localize mRNA expression in tissue samples. Combining ISH with immunohistochemistry (IHC) to determine cell type provides cellular context of mRNA expression, which cannot be achieved with gene microarray or polymerase chain reaction. To study mRNA and protein expression on the same section we investigated the use of RNAscope® ISH in combination with fluorescent IHC on paraffin-embedded human brain tissue. We first developed a high-throughput, automated image analysis workflow for quantifying RNA puncta across the total cell population and within neurons identified by NeuN+ immunoreactivity. We then applied this automated analysis to tissue microarray (TMA) sections of middle temporal gyrus tissue (MTG) from neurologically normal and Alzheimer's Disease (AD) cases to determine the suitability of three commonly used housekeeping genes: ubiquitin C (UBC), peptidyl-prolyl cis-trans isomerase B (PPIB) and DNA-directed RNA polymerase II subunit RPB1 (POLR2A). Overall, we saw a significant decrease in total and neuronal UBC expression in AD cases compared to normal cases. Total expression results were validated with RT-qPCR using fresh frozen tissue from 5 normal and 5 AD cases. We conclude that this technique combined with our novel automated analysis pipeline provides a suitable platform to study changes in gene expression in diseased human brain tissue with cellular and anatomical context. Furthermore, our results suggest that UBC is not a suitable housekeeping gene in the study of post-mortem AD brain tissue

    fISHing with immunohistochemistry for housekeeping gene changes in Alzheimer’s disease using an automated quantitative analysis workflow

    No full text
    peer reviewedIn situ hybridization (ISH) is a powerful tool that can be used to localize mRNA expression in tissue samples. Combining ISH with immunohistochemistry (IHC) to determine cell type provides cellular context of mRNA expression, which cannot be achieved with gene microarray or polymerase chain reaction. To study mRNA and protein expression on the same section we investigated the use of RNAscope® ISH in combination with fluorescent IHC on paraffin-embedded human brain tissue. We first developed a high-throughput, automated image analysis workflow for quantifying RNA puncta across the total cell population and within neurons identified by NeuN+ immunoreactivity. We then applied this automated analysis to tissue microarray (TMA) sections of middle temporal gyrus tissue (MTG) from neurologically normal and Alzheimer's Disease (AD) cases to determine the suitability of three commonly used housekeeping genes: ubiquitin C (UBC), peptidyl-prolyl cis-trans isomerase B (PPIB) and DNA-directed RNA polymerase II subunit RPB1 (POLR2A). Overall, we saw a significant decrease in total and neuronal UBC expression in AD cases compared to normal cases. Total expression results were validated with RT-qPCR using fresh frozen tissue from 5 normal and 5 AD cases. We conclude that this technique combined with our novel automated analysis pipeline provides a suitable platform to study changes in gene expression in diseased human brain tissue with cellular and anatomical context. Furthermore, our results suggest that UBC is not a suitable housekeeping gene in the study of post-mortem AD brain tissue

    Immunofluorescent labelling of α-syn strains in control pericytes with α-syn epitope-specific antibodies AA103-108 (green).

    No full text
    Strains specific fluorescent staining 5 hours after pre-treatment with 100nM α-syn. At early time point, all cells contain aggregates, except for fibrils110 treated cells (white arrows); (A) Fibrils, (B) Ribbons, (C) fibrils65, with occasional larger aggregates (magenta arrow), (D) fibrils91, (E) fibrils110, (F) no treatment control. 3D confocal view of α-syn aggregates in pericytes 5 hours and 5 days after pre-treatment with 100nM (D, I) Fibrils, (E, J) Ribbons, (F, J) fibrils65, (G, K) fibrils91, (H, L) fibrils110. Typically aggregates appear as spots (orange arrows) with thicker fibres (white arrows) appearing more frequently at later time points. Scale bars represent 50 μm.</p

    Primary human mixed neuronal cell exposed to α-syn aggregates—internalisation is cell type-specific.

    No full text
    (A) Representative images of live cell recording with α-syn-594 aggregates. (B-C) Confocal imaging indicates that α-syn-594 aggregates are present within neurons and pericytes. (E-I) Cells with high α-syn aggregate load are microglia CD45+ and IBA1+. Representative images of primary human mixed neuronal cell exposed to (J) Ribbons with (L-O) Ribbons within Astrocytes GFAP high, MAP2 low and (P-S) neurons GFAP low-MAP2 high.</p
    corecore